GENERAL DESCRIPTION
The NJW4111 is a ultra-low drop out adjustable regulators that delivers low output voltage from 0.8 to 1.8V with high precision and high line/load regulations.

It has also built-in over current protection, under voltage lock-out, soft start function and short circuit protection (Timer latch type).

It is suitable for a low noise constant voltage source such as the chip-set that demand a large output current up to 3.0A.

FEATURES
- Dual input voltage V_{IN}: 0.8 to 3.3V
 V_{BIAS}: 4.3 to 5.5V
- Output current $I_{OUT}(\text{min.}) = 3.0A$
- High precision reference $V_{FB} = 0.65V \pm 1\%$
- Adjustable output voltage 0.8V to 1.8V
- ON/OFF function
- Discharge function
- Soft start function $T_{CS(ON)} = 3\text{msec typ.}$
- Undervoltage lockout (UVLO) circuit
- Thermal shutdown circuit (Timer latch type)
- Over current protection
- Short circuit protection (Timer latch type)
- Package HSOP8

PIN CONFIGURATION
1. V_{OUT} : Output Pin
2. V_{OUT} : Output Pin
3. V_{FB} : Reference Voltage Feedback Pin
4. GND : Ground Pin
5. V_{BIAS} : Bias Pin
6. CONTROL : Control Pin
7. V_{IN} : Input Pin
8. V_{IN} : Input Pin

Exposed PAD on backside connect to GND

NJW4111GM1
ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>V_IN</td>
<td>+4</td>
<td>V</td>
</tr>
<tr>
<td>Bias Voltage</td>
<td>V_BIAS</td>
<td>+6</td>
<td>V</td>
</tr>
<tr>
<td>Control Voltage</td>
<td>V_CONT</td>
<td>+6</td>
<td>V</td>
</tr>
<tr>
<td>Output Current</td>
<td>I_OUT</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_D</td>
<td>790(*1) 2500(*2)</td>
<td>mW</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T_J</td>
<td>-40 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_opr</td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_stg</td>
<td>-40 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(*1): Mounted on glass epoxy board. (76.2×114.3×1.6mm: based on EIA/JDEC standard, 2Layers)
(*2): Mounted on glass epoxy board. (76.2×114.3×1.6mm: based on EIA/JDEC standard, 4Layers)
(For 4Layers: Applying 74.2x 74.2mm inner Cu area and a thermal via hole to a board based on JEDEC standard JESD51-5)

RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>V_IN</td>
<td>0.8</td>
<td>-</td>
<td>3.3</td>
<td>V</td>
</tr>
<tr>
<td>Bias Voltage</td>
<td>V_BIAS</td>
<td>4.3</td>
<td>-</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Control Voltage</td>
<td>V_CONT</td>
<td>-0.3</td>
<td>-</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage Range</td>
<td>V_OUT</td>
<td>0.8</td>
<td>-</td>
<td>1.8</td>
<td>V</td>
</tr>
</tbody>
</table>

BUILT-IN PROTECTION CIRCUIT

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over current protection</td>
<td>-</td>
</tr>
<tr>
<td>Short circuit protection</td>
<td>Timer latch type</td>
</tr>
<tr>
<td>Thermal shutdown circuit</td>
<td>Timer latch type</td>
</tr>
</tbody>
</table>

BUILT-IN FUNCTION

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft start Function</td>
<td>3msec typ.</td>
</tr>
<tr>
<td>V_IN-UVLO</td>
<td>0.73V typ.</td>
</tr>
<tr>
<td>V_BIAS-UVLO</td>
<td>3.8V typ.</td>
</tr>
<tr>
<td>Power supply injection sequence-free</td>
<td>-</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, $V_{\text{BIAS}}=5\text{V}$, $V_{\text{CONT}}=3\text{V}$, $V_{\text{IN}}=V_{\text{OUT}}+0.5\text{V}$, $C_{\text{BIAS}}=1\mu\text{F}$, $C_{\text{N}}=22\mu\text{F}$, $C_{\text{O}}=10\mu\text{F}$, $C_{\text{FB}}=1000\text{pF}$, $Ta=25^\circ\text{C}$)

General Characteristic

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITION</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bias Current</td>
<td>$I_{Q(V\text{BIAS})}$</td>
<td>$I_{\text{OUT}}=0\text{mA}$, except I_{CONT}</td>
<td>-</td>
<td>1.4</td>
<td>2.2</td>
<td>mA</td>
</tr>
<tr>
<td>Bias Current at OFF</td>
<td>$I_{Q(V\text{BIAS}(\text{OFF}))}$</td>
<td>$V_{\text{CONT}}=0\text{V}$</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>Input Current at OFF</td>
<td>$I_{Q(V\text{IN}(\text{OFF}))}$</td>
<td>$V_{\text{CONT}}=0\text{V}$</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>Feedback Voltage</td>
<td>V_{FB}</td>
<td></td>
<td>-1.0%</td>
<td>0.65</td>
<td>+1.0%</td>
<td>V</td>
</tr>
<tr>
<td>Output Current</td>
<td>I_{OUT}</td>
<td>$V_{\text{OUT}} \times 0.9$</td>
<td>3.0</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Line Regulation (V_{BIAS})</td>
<td>$\Delta V_{O}/\Delta V_{\text{BIAS}}$</td>
<td>$V_{\text{BIAS}}=4.2\text{V}$ to 5.5V, $I_{\text{OUT}}=30\text{mA}$</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>%V</td>
</tr>
<tr>
<td>Line Regulation (V_{IN})</td>
<td>$\Delta V_{O}/\Delta V_{\text{IN}}$</td>
<td>$V_{\text{IN}}=V_{\text{OUT}}+0.5\text{V}$ to 3.3V, $I_{\text{OUT}}=30\text{mA}$</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>%V</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>$\Delta V_{O}/\Delta I_{O}$</td>
<td>$I_{\text{OUT}}=0\text{mA}$ to 3A</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>mV</td>
</tr>
<tr>
<td>Output ON Resistance</td>
<td>R_{ON}</td>
<td>$I_{\text{OUT}}=3\text{A}$, $V_{\text{IN}}=1.1\text{V}$</td>
<td>-</td>
<td>28</td>
<td>50</td>
<td>mΩ</td>
</tr>
<tr>
<td>Discharge Current at OFF</td>
<td>$I_{Q(V\text{OFF})}$</td>
<td>$V_{\text{CONT}}=0\text{V}$, $V_{\text{OUT}}=1\text{V}$</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td>Feedback Current</td>
<td>I_{FB}</td>
<td></td>
<td>-100</td>
<td>0</td>
<td>+100</td>
<td>nA</td>
</tr>
<tr>
<td>V_{IN} Pin Leak Current</td>
<td>$I_{\text{LEAK}(V\text{IN})}$</td>
<td>$V_{\text{BIAS}}=V_{\text{CONT}}=5\text{V}$, $V_{\text{N}}=0\text{V}$</td>
<td>-</td>
<td>0.25</td>
<td>0.60</td>
<td>μA</td>
</tr>
</tbody>
</table>

ON/OFF Control Block

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITION</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Voltage for ON-state</td>
<td>$V_{\text{CONT(ON)}}$</td>
<td>V_{CONT}: Sweep up</td>
<td>1.6</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Control Voltage for OFF-state</td>
<td>$V_{\text{CONT(OFF)}}$</td>
<td>V_{CONT}: Sweep down</td>
<td>-</td>
<td>-</td>
<td>0.6</td>
<td>V</td>
</tr>
<tr>
<td>Control Current</td>
<td>I_{CONT}</td>
<td>$V_{\text{CONT}}=1.6\text{V}$</td>
<td>1</td>
<td>3</td>
<td>12</td>
<td>μA</td>
</tr>
<tr>
<td>Soft Start Time</td>
<td>$T_{\text{CS(ON)}}$</td>
<td>$V_{\text{CONT}}=L\rightarrow H$</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>msec</td>
</tr>
</tbody>
</table>

UVLO Block

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITION</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{BIAS} Undervoltage Lockout Threshold Voltage</td>
<td>$V_{\text{BIAS(UVLO)}}$</td>
<td>V_{BIAS}: Sweep up</td>
<td>3.5</td>
<td>3.8</td>
<td>4.1</td>
<td>V</td>
</tr>
<tr>
<td>V_{BIAS} Undervoltage Lockout Hysteresis Voltage</td>
<td>$V_{\text{BIAS(HYS)}}$</td>
<td>V_{BIAS}: Sweep down</td>
<td>100</td>
<td>160</td>
<td>220</td>
<td>mV</td>
</tr>
<tr>
<td>V_{IN} Undervoltage Lockout Threshold Voltage</td>
<td>$V_{\text{IN(UVLO)}}$</td>
<td>V_{IN}: Sweep up</td>
<td>0.71</td>
<td>0.73</td>
<td>0.75</td>
<td>V</td>
</tr>
</tbody>
</table>

SCP Block

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITION</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCP Start up Voltage</td>
<td>V_{OCSP}</td>
<td>$V_{\text{OCSP}} \times 0.32$</td>
<td>0.32</td>
<td>0.35</td>
<td>0.36</td>
<td>V</td>
</tr>
<tr>
<td>SCP Timer Latch Time</td>
<td>T_{SCP}</td>
<td></td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>μsec</td>
</tr>
</tbody>
</table>
- BLOCK DIAGRAM -

- POWER DISSIPATION vs. AMBIENT TEMPERATURE -

NJW4111GM1 Power Dissipation
(Topr=-40~+85°C, Tj=150°C)

Power Dissipation P_D (mW)

<table>
<thead>
<tr>
<th>Temperature T_a (°C)</th>
<th>Power Dissipation P_D (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50</td>
<td>3500</td>
</tr>
<tr>
<td>-25</td>
<td>3000</td>
</tr>
<tr>
<td>0</td>
<td>2500</td>
</tr>
<tr>
<td>25</td>
<td>2000</td>
</tr>
<tr>
<td>50</td>
<td>1500</td>
</tr>
<tr>
<td>75</td>
<td>1000</td>
</tr>
<tr>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>0</td>
</tr>
</tbody>
</table>

on 4 layers board

on 2 layers board
PIN DESCRIPTIONS

<table>
<thead>
<tr>
<th>PIN NUMBER</th>
<th>PIN NAME</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V_OUT</td>
<td>Output pin. It can be adjusted from 0.8V to 1.8V.</td>
</tr>
<tr>
<td>2</td>
<td>V_OUT</td>
<td>Output pin. It can be adjusted from 0.8V to 1.8V.</td>
</tr>
<tr>
<td>3</td>
<td>FB</td>
<td>Output Voltage Detecting pin. Control output voltage that FB pin voltage should become the reference voltage 0.65Vtyp.</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>GND pin.</td>
</tr>
<tr>
<td>5</td>
<td>V_BIAS</td>
<td>Power supply for IC Control bias. Insert the capacitor between V_BIAS pin and GND pin for reduce the power supply impedance.</td>
</tr>
<tr>
<td>6</td>
<td>CONTROL</td>
<td>ON/OFF control pin for NJW4111. Normal Operation at the time of High level. Standby Mode at the time of Low level or Open.</td>
</tr>
<tr>
<td>7</td>
<td>V_IN</td>
<td>Power supply for power line. Insert the capacitor between V_IN pin and GND pin for reduce the power supply impedance.</td>
</tr>
<tr>
<td>8</td>
<td>V_IN</td>
<td>Power supply for power line. Insert the capacitor between V_IN pin and GND pin for reduce the power supply impedance.</td>
</tr>
<tr>
<td>-</td>
<td>Exposed PAD</td>
<td>Connected to GND pin.</td>
</tr>
</tbody>
</table>

DESCRIPTION OF EACH BLOCK

MAIN AMP
This is an error amp compares the reference voltage (0.65V) with V_FB to drive the output Nch-MOSFET. This amp’s phase compensation is designed to be able to use a very low ESR capacitor from 0.02Ω.

CONTROL
Control block switches the regulator’s ON/OFF state. In the OFF state, circuit current is maintained at 0µA, and minimize current consumption at standby. Discharge circuit, connected to the V_OUT pin, pulls up an unnecessary electric charge and prevents the malfunction of the load side in the OFF state.

V_BIAS - UVLO
ULVO block for bias voltage turns the output voltage off to prevent malfunction when V_BIAS is the threshold voltage or less. At the time of the lockout, discharges output voltage in the same way as OFF state.

V_IN - UVLO
When the V_IN voltage is beyond 0.73V(typ.), UVLO block for input voltage turns the output on. The output does not turn off when once a lockout is released even if the V_IN voltage falls. But, when the V_IN voltage falls and the V_OUT voltage falls below the SCP threshold voltage, turn the output off due to SCP. The V_IN-UVLO is available only at the time of startup. If the V_CONT or the V_BIAS is re-injected, V_IN-UVLO will be available again.

Over Current Protection
This circuit protects an IC of the load side to damp the output voltage when output current exceeds the constant value. When the overcurrent state eliminated, output voltage restored to the parameter value. However when output voltage is less than SCP startup voltage, the SCP function becomes active and output switches OFF

Thermal Shutdown (TSD)
Thermal Shutdown circuit is latched OFF the output when the chip temperature exceeds the threshold temperature after the programmed time period elapses. Because equipped with a latch function, maintain an Off state till apply CONTROL or V_BIAS again. Because TSD circuit is built-in for the purpose of protecting IC itself, please do the thermal design within Tj(max).
NJW4111

- **Short Circuit Protection (SCP)**
 When output voltage drops, NJW4111 assumes that V_{OUT} pin is shorted to GND and switched output OFF after a certain period of time. Because equipped with a latch function, maintain an Off state till apply CONTROL or V_{BIAS} again.

 When SCP becomes effective, and an output current is intercepted, please be careful the voltage more than the maximum rating be never impressed on a V_{IN} pin. (refer to *4)

 For prevention of malfunction on start up, this circuit becomes invalid at the time of the start (effective Soft start function) temporarily.

TEST CIRCUIT

![Test Circuit Diagram](image)

(*3) Provision for supply impedance of the measuring instrument

TYPICAL APPLICATION

![Typical Application Diagram](image)

(*4) Input Capacitor C_{IN}, Bias Capacitor C_{BIAS}

 Input Capacitor C_{IN} and Bias Capacitor C_{BIAS} are required to prevent oscillation and reduce power supply ripple for applications with high power supply impedance or a long power supply line. Please use the C_{IN} of recommended value larger to avoid the problem. ($C_{BIAS} \geq 1.0 \mu F, C_{IN} \geq 22 \mu F$)

 C_{IN} and C_{BIAS} should connect between GND and V_{IN}, V_{BIAS} as shortest path as possible.

 Recommend large capacity value C_{IN} because tend to become unstable in input voltage (V_{IN}) when a load change is heavy.

 Please for enough confirmation with the actual machine to strongly depend on the characteristic of power supply to use for inputs and the pattern of the board.
Output Capacitor \(C_O \)

Output capacitor \((C_O) \) will be required for a phase compensation of the internal error amplifier. The capacitance and the equivalent series resistance (ESR) influence to stable operation of the regulator. This product is designed to work with a low ESR capacitor \((C_O) \). However use of recommended capacitance or larger value is effective for stable operation. Use of a smaller \(C_O \) may cause excess output noise or oscillation of the regulator due to lack of the phase compensation. Therefore use \(C_O \) with the recommended capacitance or larger value and connect between \(V_{OUT} \) pin and GND pin with shortest path. The recommended capacitance depends on the output voltage rank. Low voltage regulator requires larger value \(C_O \). Thus, check the recommended capacitance for each output voltage rank. Uses of a larger \(C_O \) reduces output noise and ripple output, and also improves output transient response against rapid load change. It depends on the pattern of the board and power supply use for input, Power supply \((V_{IN}) \) becomes unstable and tends to be easy to cause an oscillation, aggravation of Ripple Rejection and output transient response characteristics when design \(C_{IN} < C_O \).

Therefore, like a mention of the (*4), please connect \(C_{IN} \) of enough capacity value, and improve stabilization of input power supply \((V_{IN}) \). In addition, you should consider varied characteristics of capacitor (a frequency characteristic, a temperature characteristic, a DC bias characteristic and so on) and unevenness peculiar to a capacitor supplier enough.

When selecting \(C_O \), recommend that have withstand voltage margin against output voltage and superior temperature characteristic though this product is designed stability works with wide range ESR of capacitor including low ESR products.

Feedback Capacitor \(C_{FB} \)

Please insert the \(C_{FB} \) for stable operation by all means. It correct phase compensation of the IC inside and can support the output capacitor of various kinds by adjustment capacitance of \(C_{FB} \).

Output voltage setting resistance \(R_1, R_2 \)

Output voltage can be set with a configuration formula \((R_2/R_1+1)\cdot V_{FB} \) using the values for the internal reference output voltage \((V_{FB}) \) and the output voltage resistors \((R_1, R_2) \).

Select resistance values that will avoid the influence of the Feedback Current \(I_{FB}(\pm 100nA) \). The recommended total resistance value is about 10kΩ.
TYPICAL CHARACTERISTICS

NJW4111_1.2V

Output Voltage vs Input Voltage

@: Ta=25°C
I_{OUT}=30mA
C_o=10μF (Ceramic)
V_{IN}=5.0V

Output Voltage vs BIAS Voltage

@: Ta=25°C
I_{OUT}=30mA
C_o=10μF (Ceramic)
V_{IN}=1.7V

Output Voltage vs Output Current

@: V_{IN}=1.7V
V_{BIAS}=5.0V
C_o=10μF (Ceramic)

Quiescent Current vs Output Current

@: Ta=25°C
V_{IN}=1.7V
V_{BIAS}=5V
C_o=10μF (Ceramic)
except I_{CONT}

Quiescent Current vs Input Voltage

@: Ta=25°C
V_{IN}=1.7V
V_{BIAS}=5.0V
Output is open.
C_o=10μF (Ceramic)
except I_{CONT}

Control Current vs Control Voltage

@: Ta=25°C
V_{IN}=1.7V
V_{BIAS}=5.0V
C_o=10μF (Ceramic)
R_c=0Ω
R_c=50kΩ
R_c=100kΩ

Equivalent Series Resistance: $ESR(\Omega)$

Output Current: $I_{OUT}(\text{mA})$

NJW4111_1.2V

Output Noise Voltage vs Output Current

- @ $Ta=25^\circ C$
- $V_{IN}=1.7V$
- $V_{IN}=5.0V$
- $Cfb=1000pF$
- $Co=10\mu F$ (Ceramic)

Equivalent Series Resistance vs Output Current

- @ $Ta=25^\circ C$
- $Cin=22\mu F$ (Ceramic)
- $Cfb=1000pF$

V_{IN} Ripple Rejection vs Frequency

- @ $Ta=25^\circ C$
- $V_{IN}=1.7V$
- $V_{IN}=5.0V$
- $Cfb=1000pF$
- $Co=10\mu F$ (Ceramic)

V_{BIAS} Ripple Rejection vs Frequency

- @ $Ta=25^\circ C$
- $V_{IN}=1.7V$
- $V_{IN}=5.0V$
- $Cfb=1000pF$
- $Co=10\mu F$ (Ceramic)

V_{IN} Ripple Rejection vs Output Current

- @ $Ta=25^\circ C$
- $V_{IN}=1.7V$
- $V_{IN}=5.0V$
- $Cfb=1000pF$
- $Co=10\mu F$ (Ceramic)

V_{BIAS} Ripple Rejection vs Output Current

- @ $Ta=25^\circ C$
- $V_{IN}=1.7V$
- $V_{IN}=5.0V$
- $Cfb=1000pF$
- $Co=10\mu F$ (Ceramic)
NJW4111

Output Peak Current vs Temperature

Temperature: Ta (°C)

Output Peak Current: I_{PEAK} (A)

- V_{IN} = 1.7V
- V_{BIAS} = 5.0V
- V_{OUT} = 0.9V
- C_{o} = 10μF (Ceramic)

Quiescent Current vs Temperature

Temperature: Ta (°C)

Quiescent Current: I_{Q} (μA)

- V_{IN} = 1.7V
- V_{BIAS} = 5.0V
- Output is open except I_{cont}
- C_{o} = 10μF (Ceramic)

V_{BIAS}-UVLO Voltage vs Temperature

Temperature: Ta (°C)

V_{BIAS}-UVLO Voltage: V_{BIAS-UVLO} (V)

- @ V_{IN} = 1.7V
- V_{BIAS} = 5.0V
- I_{OUT} = 30mA
- C_{o} = 10μF (Ceramic)

Output ON resistance vs Temperature

Temperature: Ta (°C)

Output ON Resistance: R_{ON} (mΩ)

- @ V_{IN} = 1.2V
- V_{BIAS} = 5.0V
- I_{OUT} = 1, 2, 3A
- C_{o} = 10μF (Ceramic)
NJW4111_1.2V
Discharge Current at OFF vs Temperature

Temperature: Ta (°C)

Discharge Current at OFF: I_{O(OFF)} (mA)

@ V_{IN}=1.7V
V_{BIAS}=5.0V
V_{CONT}=0V
V_{OUT}=1.0V
C_C=10μF (Ceramic)

NJW4111_1.2V
Softstart Time vs Temperature

Temperature: Ta (°C)

Softstart Time: T_{CS(ON)} (ms)

NJW4111_1.2V
SCP Time vs Temperature

Temperature: Ta (°C)

SCP Time: T_{SCP} (μs)
njw4111_1.2v

Output Current

- **Output Current:** I_{OUT} (A)
- **Output Voltage:** V_{OUT} (V)

Output Voltage

- **Output Voltage:** V_{OUT} (V)

Load Transient Response

- **Load Transient Response:**
 - $V_{IN} = 1.7V, V_{BIAS} = 5.0V$
 - $C_o = 10μF$(Ceramic)

Input Transient Response

- **Input Transient Response:**
 - $V_{IN} = 1.7V - 2.7V$
 - $I_{OUT} = 30mA$

ON/OFF Transient Response

- **ON/OFF Transient Response without Load:**
 - $V_{IN} = 1.7V, V_{BIAS} = 5.0V$
 - $C_o = 10μF$(Ceramic)

- **ON/OFF Transient Response:**
 - $V_{IN} = 1.7V, V_{BIAS} = 5.0V$
 - $C_o = 10μF$(Ceramic)

New Japan Radio Co., Ltd.

Ver.2014-06-25
[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and are not intended for the guarantee or permission of any right including the industrial rights.