Low Output Voltage Low Dropout Regulator

GENERAL DESCRIPTION

The NJM2841 is a low output voltage, low drop out regulators. It delivers up to 500mA output current with the output voltage of 0.8 to 2.5V. The use of an external bias voltage can improve the transient response and the ripple rejection characteristics while maintaining minimum input to output voltage.

FEATURES

- Output Voltage Range 0.8V to 2.5V
- High Ripple Rejection 86 dB typ. (V_O=1.2V version)
- Output Noise Voltage V_NO=40µVrms (V_O=1.2V version)
- Output Current I_O(min)=500mA
- High Precision Output V_O±1.0%
- Dual Supply Voltage Type V_IN, V_BIAS (sequence free)
- High Stability for Load 0.002%/mA (max)
- Output Capacitor with 4.7µF ceramic capacitor
- Low Dropout Voltage 0.1V typ. @I_O=300mA
- ON/OFF Control
- Built-in Thermal Overload Protection and Over Current Protection
- Bipolar Technology
- Package Outline SOT-23-5, SOT-89-5

PIN CONNECTION

- 1. CONTROL
- 2. GND
- 3. V_OUT
- 4. V_IN
- 5. V_BIAS

BLOCK DIAGRAM

The NJM2841 is a low output voltage, low dropout regulators. It delivers up to 500mA output current with the output voltage of 0.8 to 2.5V. The use of an external bias voltage can improve the transient response and the ripple rejection characteristics while maintaining minimum input to output voltage.
OUTPUT VOLTAGE RANK LIST

<table>
<thead>
<tr>
<th>Device Name</th>
<th>V_{out}</th>
<th>Device Name</th>
<th>V_{out}</th>
<th>Device Name</th>
<th>V_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJM2841F008</td>
<td>0.8V</td>
<td>NJM2841F017</td>
<td>1.7V</td>
<td>NJM2841U2-012</td>
<td>1.2V</td>
</tr>
<tr>
<td>NJM2841F009</td>
<td>0.9V</td>
<td>NJM2841F018</td>
<td>1.8V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NJM2841F010</td>
<td>1.0V</td>
<td>NJM2841F019</td>
<td>1.9V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NJM2841F011</td>
<td>1.1V</td>
<td>NJM2841F020</td>
<td>2.0V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NJM2841F012</td>
<td>1.2V</td>
<td>NJM2841F021</td>
<td>2.1V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NJM2841F013</td>
<td>1.3V</td>
<td>NJM2841F022</td>
<td>2.2V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NJM2841F014</td>
<td>1.4V</td>
<td>NJM2841F023</td>
<td>2.3V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NJM2841F015</td>
<td>1.5V</td>
<td>NJM2841F024</td>
<td>2.4V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NJM2841F016</td>
<td>1.6V</td>
<td>NJM2841F025</td>
<td>2.5V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output Voltage Range: 0.8V to 2.5V (0.1V step)

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>V_{IN}</td>
<td>+10</td>
<td>V</td>
</tr>
<tr>
<td>Bias Voltage</td>
<td>V_{BIAS}</td>
<td>+10</td>
<td>V</td>
</tr>
<tr>
<td>Control Voltage</td>
<td>V_{CONT}</td>
<td>+10</td>
<td>V</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_{D}</td>
<td>480(*1)</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>640(*2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOT-23-5</td>
<td>625(*3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOT-89-5</td>
<td>2400(*4)</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>Topr</td>
<td>-40 ~ +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>Tstg</td>
<td>-50 ~ +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(*1): Mounted on glass epoxy board. (76.2 x 114.3 x 1.6mm: based on EIA/JDEC standard, 2Layers)
(*2): Mounted on glass epoxy board. (76.2 x 114.3 x 1.6mm: based on EIA/JDEC standard, 4Layers), internal Cu area: 74.2 x 74.2mm
(*3): Mounted on glass epoxy board. (76.2 x 114.3 x 1.6mm: based on EIA/JDEC standard size, 2Layers, Cu area 100mm²)
(*4): Mounted on glass epoxy board. (76.2 x 114.3 x 1.6mm: based on EIA/JDEC standard, 4Layers)
(For 4Layers: Applying 74.2 x 74.2mm inner Cu area and a thermal via hole to a board based on JEDEC standard JESD51-5)

BIAS VOLTAGE RANGE

V_{BIAS} = +2.5V to +10V ($V_{O} < 1.5V$)

V_{BIAS} = V_{O}+1V to +10V ($V_{O} \geq 1.5V$)
ELECTRICAL CHARACTERISTICS

\((V_{\text{BIAS}}=2.5V(V_{\text{O}}>1.5V) : V_{\text{BIAS}}=V_{\text{O}}+1V), V_{\text{IN}}=V_{\text{O}}+1V, C_{\text{BIAS}}=0.1\mu F, C_{\text{IN}}=4.7\mu F, C_{\text{O}}=4.7\mu F, T_A=25^\circ C)\)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITION</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage</td>
<td>(V_O)</td>
<td>(I_O=30mA)</td>
<td>-1.0%</td>
<td>-</td>
<td>+1.0%</td>
<td>V</td>
</tr>
<tr>
<td>Unloaded Bias Current</td>
<td>(I_{\text{BIAS}})</td>
<td>(I_O=0mA), except (I_{\text{CONT}})</td>
<td>-</td>
<td>180</td>
<td>300</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Unloaded Input Current</td>
<td>(I_{\text{IN}})</td>
<td>(I_O=0mA), except (I_{\text{CONT}})</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Bias Current at Control OFF</td>
<td>(I_{\text{BIAS(OFF)}})</td>
<td>(V_{\text{CONT}}=0V)</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>Input Current at Control OFF</td>
<td>(I_{\text{IN(OFF)}})</td>
<td>(V_{\text{CONT}}=0V)</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>Output Current</td>
<td>(I_O)</td>
<td>(V_O \times 0.9V)</td>
<td>500</td>
<td>650</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td>Line Regulation 1 ((V_{\text{BIAS}}))</td>
<td>(\Delta V_O/\Delta V_{\text{BIAS}})</td>
<td>(V_{\text{BIAS}}=2.5V) to (V_O+6V(V_O<1.5V)) (V_{\text{BIAS}}=V_O+1V) to (V_O+6V(V_O\geq 1.5V)) (I_O=30mA)</td>
<td>-</td>
<td>-</td>
<td>0.10</td>
<td>%/V</td>
</tr>
<tr>
<td>Line Regulation 2 ((V_{\text{IN}}))</td>
<td>(\Delta V_O/\Delta V_{\text{IN}})</td>
<td>(V_O=V_O+1V) to (V_O+6V(I_O=30mA))</td>
<td>-</td>
<td>-</td>
<td>0.10</td>
<td>%/V</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>(\Delta V_O/\Delta I_O)</td>
<td>(I_O=30) to 500mA</td>
<td>-</td>
<td>-</td>
<td>0.002</td>
<td>%/mA</td>
</tr>
<tr>
<td>Dropout Voltage</td>
<td>(\Delta V_{\text{IO}})</td>
<td>(I_O=300mA)</td>
<td>-</td>
<td>0.10</td>
<td>0.18</td>
<td>V</td>
</tr>
<tr>
<td>Ripple Rejection Ratio 1 ((V_{\text{BIAS}}))</td>
<td>(\text{RR1}(V_{\text{BIAS}}))</td>
<td>(V_{\text{BIAS}}=3.5V, e_{\text{BIAS}}=200mVrms, f=1kHz, I_O=10mA)</td>
<td>Refer to Table 1</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Ripple Rejection Ratio 2 ((V_{\text{IN}}))</td>
<td>(\text{RR2}(V_{\text{IN}}))</td>
<td>(e_{\text{IN}}=200mVrms, f=1kHz, I_O=10mA)</td>
<td>Refer to Table 1</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Average Temperature Coefficient of Output Voltage</td>
<td>(\Delta V_O/\Delta T_a)</td>
<td>(T_a=0) to +85°C, (I_O=10mA)</td>
<td>-</td>
<td>±50</td>
<td>-</td>
<td>ppm/C</td>
</tr>
<tr>
<td>Output Noise Voltage</td>
<td>(V_{\text{NO}})</td>
<td>(f=10Hz) to 80kHz, (I_O=10mA)</td>
<td>Refer to Table 1</td>
<td></td>
<td></td>
<td>(\mu Vrms)</td>
</tr>
<tr>
<td>Control Current</td>
<td>(I_{\text{CONT}})</td>
<td>(V_{\text{CONT}}=1.6V)</td>
<td>-</td>
<td>3</td>
<td>12</td>
<td>(\mu A)</td>
</tr>
</tbody>
</table>

Table 1

PARAMETER	SYMBOL	TEST CONDITION	\(V_O=0.8V\)	\(V_O=0.9V\)	\(V_O=1.0V\)	\(V_O=1.2V\)	\(V_O=1.5V\)	\(V_O=2.5V\)	\(V_O=3.5V\)	\(V_O=4.5V\)	\(V_O=2.5V\)	\(V_O=0.8V\)	\(V_O=0.9V\)	\(V_O=1.0V\)	\(V_O=1.2V\)	\(V_O=1.5V\)	\(V_O=2.5V\)	\(V_O=3.5V\)	\(V_O=4.5V\)	\(V_O=2.5V\)		
\(\text{RR}(V_{\text{BIAS}})\)	\(V_{\text{BIAS}}=3.5V, e_{\text{BIAS}}=200mVrms, f=1kHz, I_O=10mA\)	-	80	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
\(\text{RR}(V_{\text{IN}})\)	\(e_{\text{IN}}=200mVrms, f=1kHz, I_O=10mA\)	\(V_O=0.8V\)	-	87	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Output Noise Voltage	\(V_{\text{NO}}\)	\(f=10Hz\) to 80kHz, \(I_O=10mA\)	\(V_O=2.5V\)	-	75	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

New Japan Radio Co., Ltd.

Ver.2013-08-01
POWER DISSIPATION vs. AMBIENT TEMPERATURE

NJM2841F Power Dissipation
(Topr=-40~+85°C, Tj=150°C)

- **Device itself**
 - on 2 layers board

NJM2841U2 Power Dissipation
(Topr=-40~+85°C, Tj=150°C)

- **on 2 layers board**
- **on 4 layers board**
TEST CIRCUIT

- **VBIAS**
- **GND**
- **CONTROL**
- **VOUT**
- **VIN**
- **VOUT**
- **ICONT**
- **0.1µF**
- **4.7µF**

TYPICAL APPLICATION

a) In case of where ON/OFF control is not required:

- Connect control pin to **VBIAS** pin.
- Though the **ICONT** decreases by inserting "R" to between Control pin and **VBIAS**pin, the minimum operating voltage is increased due to the resistor "R".

b) In use of ON/OFF control:

- State of control pin:
 - "H" → output is enabled.
 - "L" or "open" → output is disabled.
* Bias Capacitor C_{BIAS} and an Input Capacitor C_{IN}

C_{BIAS} and C_{IN} are required to prevent oscillation and reduce power supply ripple for applications when high power supply impedance or a long power supply line.

Therefore, use recommended C_{BIAS} and C_{IN} value (refer to conditions of ELECTRIC CHARACTERISTIC) or larger and should connect between V_{BIAS} - GND, V_{IN} - GND as shortest path as possible to avoid the problem.

*Output Capacitor C_O

Output capacitor (C_O) will be required for a phase compensation of the internal error amplifier.

The capacitance and the equivalent series resistance (ESR) influence to stable operation of the regulator.

Use of a smaller C_O may cause excess output noise or oscillation of the regulator due to lack of the phase compensation.

On the other hand, Use of a larger C_O reduces output noise and ripple output, and also improves output transient response when rapid load change.

Therefore, use the recommended C_O value (refer to conditions of ELECTRIC CHARACTERISTIC) or larger and should connect between GND and V_{OUT} as shortest path as possible for stable operation.

In addition, you should consider varied characteristics of capacitor (a frequency characteristic, a temperature characteristic, a DC bias characteristic and so on) and unevenness peculiar to a capacitor supplier enough.

When selecting C_O, recommend that have withstand voltage margin against output voltage and superior temperature characteristic though this product is designed stability works with wide range ESR of capacitor including low ESR products.
TYPICAL CHARACTERISTICS

Output Voltage vs. Input Voltage

@ \(T_a = 25^\circ C \)
vin = 2.2V
Vbias = 2.5V
C_in = 4.7uF (Ceramic)
C_bias = 0.1uF (Ceramic)

text: Io=30mA

Output Voltage vs. Output Current

@ \(T_a = 25^\circ C \)
vin = 2.2V
Vbias = 2.5V
C_in = 4.7uF (Ceramic)
C_bias = 0.1uF (Ceramic)

Output Voltage vs. Control Voltage

@ \(T_a = 25^\circ C \)
vin = 2.2V
Vbias = 2.5V
C_in = 4.7uF (Ceramic)
C_bias = 0.1uF (Ceramic)
Io = 30mA

Control Current vs. Control Voltage

@ \(T_a = 25^\circ C \)
vin = 2.2V
Vbias = 2.5V
C_in = 4.7uF (Ceramic)
C_bias = 0.1uF (Ceramic)
Io = 30mA

Ground Pin Current vs. Output Current

@ \(T_a = 25^\circ C \)
vin = 2.2V
C_in = 4.7uF (Ceramic)
C_bias = 0.1uF (Ceramic)
NJM2841

NJM2841_1.2V

Peak Output Current v.s. Temperature

- @VIN=2.2V
- Vbias=Vcont=2.5V
- Cbias=0.1uF(Ceramic)
- Cin=4.7uF(Ceramic)
- Co=4.7uF(Ceramic)

Quiescent Current v.s. Temperature

- Vbias=Vcont=2.5V
- Vin=2.2V
- Output is open
- Cin=4.7uF(Ceramic)
- Co=4.7uF(Ceramic)

Line Regulation(VIN) v.s. Temperature

- @dVIN=2.2-7.2V
- Vbias=Vcont=2.5V
- Io=30mA
- Cin=4.7uF(Ceramic)
- Co=4.7uF(Ceramic)

Line Regulation(VBIAS) v.s. Temperature

- @dVbias=2.5-7.2V
- VIN=Vcont=2.2V
- Io=30mA
- Cin=4.7uF(Ceramic)
- Co=4.7uF(Ceramic)

Load Regulation v.s. Temperature

- @VIN=2.2V
- Vbias=Vcont=2.5V
- Io=30-500mA
- Cin=4.7uF(Ceramic)
- Co=4.7uF(Ceramic)

Output Voltage v.s. Temperature

- @VBIAS=Vcont=2.5V
- Vin=2.2V
- Io=30mA
- Cin=4.7uF(Ceramic)
- Co=4.7uF(Ceramic)
NJM2841 1.2V

Short Circuit Current v.s. Temperature

@: VIN=2.2V
Vbias=Vcont=2.5V
Output is short to ground.
Cbias=0.1uF(Ceramic)
Cin=4.7uF(Ceramic)
Co=4.7uF(Ceramic)

Temperature : Ta (°C)

Short Circuit Current : Ic (mA)

0 250 500 750 1000

-50 0 50 100 150

NJM2841 1.2V
ON/OFF Transient Response

@: Ta=25°C
VIN=2.2V
Vbias=2.5V
Io=30mA
Co=4.7uF(Ceramic)

Output Voltage: Vo(V)

0 2 5 10

0.5 -2 0 2 5 8 10

Control Voltage: Vcont(V)

NJM2841 1.2V
ON/OFF Transient Response Without Load

@: Ta=25°C
VIN=2.2V
Vbias=2.5V
Io=0mA
Co=4.7uF(Ceramic)

Output Voltage: Vo(V)

0 2 5 10

0 -0.5 -2 0 2 5 8 10

Control Voltage: Vcont(V)

Output Voltage

Time: t(s)

0 1 2 3 4 5

-30

NJM2841 1.2V
Load Transient Response

@: Ta=25°C
VIN=2.2V
Vbias=2.5V
Io=30mA
Co=4.7uF(Ceramic)

Output Voltage: Vo(V)

0 2 5 10

0.5 -2 0 2 5 8 10

Control Voltage: Vcont(V)

Output Voltage

Time: t(µs)

0 4 8 12 16 20

250

NJM2841 1.2V
Line Transient Response

@: Ta=25°C
CNT=Bias=2.5V
Io=30mA
Co=4.7uF(Ceramic)

Output Voltage: Vo(V)

1.16 1.20 1.24 1.28 1.32

1.16 1.20 1.24 1.28 1.32

Input Voltage: Vin(V)

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

Time: t(ms)

0 1 2 3 4 5

NJM2841 1.2V
Line Transient Response

@: Ta=25°C
VIN=2.2V
Vbias=2.5V
Io=30mA
Co=4.7uF(Ceramic)

Output Voltage: Vo(V)

1.16 1.20 1.24 1.28 1.32

1.16 1.20 1.24 1.28 1.32

Input Voltage: Vin(V)

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

Time: t(ms)

0 1 2 3 4 5
[CAUTION] The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.