LOW DROPOUT VOLTAGE REGULATOR

GENERAL DESCRIPTION

The NJM2819A is a low dropout voltage regulator with ON/OFF control.
Advanced Bipolar technology achieves low noise, high ripple rejection and low quiescent current.
It delivers up to 7V/2A output power with the maximum input voltage of 10V.
The NJM2819A is suitable for audio/video and digital applications.

FEATURES

- High Ripple Rejection 65dB typ. (f=1kHz,3V Version)
- Output Noise Voltage $V_{no}=42\mu V$ rms typ. (Vo=3V Version)
- Output capacitor with 4.7µF ceramic capacitor (Vo≥2.1V)
- Output Current $I_{o}(\text{max.})=2.0A$
- High Precision Output $V_{o} \pm 1.0\%$
- Low Dropout Voltage 0.1V typ. ($I_{o}=1.0A$, 3.0V Version)
- ON/OFF Control
- Internal Short Circuit Current Limit
- Internal Thermal Overload Protection
- Package Outline TO-252-5

PIN CONFIGURATION

```
1. VIN
2. CONTROL
3. Vo
4. N.C.
5. GND
```

EQUIVALENT CIRCUIT
NJM2819A

■ OUTPUT VOLTAGE RANK LIST

<table>
<thead>
<tr>
<th>Device Name</th>
<th>V_{OUT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJM2819ADL3-18</td>
<td>1.8V</td>
</tr>
<tr>
<td>NJM2819ADL3-21</td>
<td>2.1V</td>
</tr>
<tr>
<td>NJM2819ADL3-03</td>
<td>3.0V</td>
</tr>
<tr>
<td>NJM2819ADL3-33</td>
<td>3.3V</td>
</tr>
<tr>
<td>NJM2819ADL3-05</td>
<td>5.0V</td>
</tr>
<tr>
<td>NJM2819ADL3-52</td>
<td>5.2V</td>
</tr>
<tr>
<td>NJM2819ADL3-07</td>
<td>7.0V</td>
</tr>
</tbody>
</table>

Output voltage options available: 1.8 ~ 7.0V

■ ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>RATINGS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>V_{IN}</td>
<td>V_{O} > 6.0V: +10</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0V < V_{O} ≤ 6.0V: +9V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{O} ≤ 5.0V: +8</td>
<td></td>
</tr>
<tr>
<td>Control Voltage</td>
<td>V_{CONT}</td>
<td>V_{O} > 6.0V: +10</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0V < V_{O} ≤ 6.0V: +9V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{O} ≤ 5.0V: +8</td>
<td></td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_{D}</td>
<td>1190(*)</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3125(*2)</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>Topr</td>
<td>-40 ~ +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>Tstg</td>
<td>-40 ~ +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(*1): Mounted on glass epoxy board. (76.2×114.3×1.6mm: EIA/JDEC standard size, 2Layers, copper area 100mm²)

(*2): Mounted on glass epoxy board. (76.2×114.3×1.6mm: EIA/JDEC standard size, 4Layers, copper area 100mm²)

(4Layers inner foil: 74.2 x 74.2mm Applying a thermal beer hall to a board based on JEDEC standard JESD51-5)

■ OPERATING VOLTAGE

\[V_{\text{IN}} = V_{O} + \Delta V_{I\text{O}} \sim 9V \] (In case of \(V_{O} > 6.0V \) version)

\[V_{\text{IN}} = V_{O} + \Delta V_{I\text{O}} \sim 8V \] (In case of \(5.0V < V_{O} \leq 6.0V \) version)

\[V_{\text{IN}} = V_{O} + \Delta V_{I\text{O}} \sim 7V \] (In case of \(2.1V \leq V_{O} \leq 5.0V \) version)

\[V_{\text{IN}} = 2.3V \sim 7V \] (In case of \(V_{O} < 2.1V \) version)

New Japan Radio Co., Ltd.
Ver.2010-02-08
ELECTRICAL CHARACTERISTICS (VIN=Vo+1V, CIN=4.7µF, Co=4.7µF(Co=10µF : 1.8V≤Vo<2.1V), Ta=25°C)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITION</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage</td>
<td>Vo</td>
<td>Io=100mA</td>
<td>-1.0%</td>
<td>-</td>
<td>+1.0%</td>
<td>V</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>Io</td>
<td>Io=0mA, exclude ICONT</td>
<td>-</td>
<td>500</td>
<td>800</td>
<td>µA</td>
</tr>
<tr>
<td>Quiescent Current at Control OFF</td>
<td>Io(OFF)</td>
<td>VCONT=0V</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>µA</td>
</tr>
<tr>
<td>Output Current</td>
<td>Io</td>
<td>Vo - 0.3V</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Line Regulation</td>
<td>ΔVo/ΔVIN</td>
<td>Vo>5.0V : VIN=Vo+1V ~ 9V, 5.0V < Vo ≤ 6.0V : VIN=Vo+1V ~ 8V, Vo≤5.0V : VIN=Vo+1V ~ 7V, Io=100mA</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>%/V</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>ΔVo/Io</td>
<td>Io=0 ~ 2.0A</td>
<td>-</td>
<td>0.05</td>
<td>0.4</td>
<td>%/A</td>
</tr>
<tr>
<td>Dropout Voltage(*2)</td>
<td>ΔVo</td>
<td>Io=1.0A</td>
<td>2.1V ≤ Vo < 2.5V</td>
<td>-</td>
<td>0.14</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.5V ≤ Vo < 2.8V</td>
<td>-</td>
<td>0.11</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.8V ≤ Vo < 3.4V</td>
<td>-</td>
<td>0.10</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.4V ≤ Vo ≤ 7.0V</td>
<td>-</td>
<td>0.09</td>
<td>0.16</td>
</tr>
<tr>
<td>Ripple Rejection</td>
<td>RR</td>
<td>ein=200mVrms, f=1kHz, Io=100mA, Vo=3V Version</td>
<td>-</td>
<td>65</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Average Temperature</td>
<td>ΔVo/Ta</td>
<td>Ta=0 ~ 85°C, Io=100mA</td>
<td>-</td>
<td>± 50</td>
<td>-</td>
<td>ppm/^C</td>
</tr>
<tr>
<td>Coefficient of Output Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Noise Voltage</td>
<td>VNO</td>
<td>f=10Hz ~ 80kHz, Io=100mA, Vo=3V Version</td>
<td>-</td>
<td>42</td>
<td>-</td>
<td>µVrms</td>
</tr>
<tr>
<td>Control Current</td>
<td>ICONT</td>
<td>VCONT=1.6V</td>
<td>-</td>
<td>3</td>
<td>12</td>
<td>µA</td>
</tr>
<tr>
<td>Control Voltage for ON-state</td>
<td>VCONT(ON)</td>
<td>1.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Control Voltage for OFF-state</td>
<td>VCONT(OFF)</td>
<td>-</td>
<td>-</td>
<td>0.6</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Minimum Input Voltage</td>
<td>VIN(MIN.)</td>
<td>Vo<2.1V</td>
<td>Io≤1.5A, Vo×0.96</td>
<td>2.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.5A<Io≤2.0A, Vo×0.96</td>
<td>2.4</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(*2): The output voltage excludes under 2.1V.
The above specification is a common specification for all output voltages.
Therefore, it may be different from the individual specification for a specific output voltage.
POWER DISSIPATION vs. AMBIENT TEMPERATURE

NJM2819ADL3 Power Dissipation
(Topr=-40~+85°C, Tj=150°C)

0 500 1000 1500 2000 2500 3000 3500
Power Dissipation P_D (mW)

-50 -25 0 25 50 75 100
Temperature : Ta(°C)
on 4 layers board
on 2 layers board

TEST CIRCUIT

NJM2819A

VIN VOUT
CONTROL GND

4.7µF

IIN ICONT

*3 : 1.8 ≤ Vo < 2.6V version : Co=10µF (Ceramic)
TYPICAL APPLICATION

1 In the case where ON/OFF Control is not required:

![Diagram showing NJM2819A with components and connections]

Connect control terminal to VIN terminal

2 In use of ON/OFF CONTROL:

![Diagram showing NJM2819A with components and connections]

State of control terminal:

• "H" → output is enabled.
• "L" or "open" → output is disabled.

* In the case of using a resistance "R" between VIN and control. The current flow into the control terminal while the IC is ON state (I_CONT) can be reduced when a pull up resistance "R" is inserted between VIN and the control terminal.

The minimum control voltage for ON state (V_CONT(ON)) is increased due to the voltage drop caused by I_CONT and the resistance "R". The I_CONT is temperature dependence as shown in the "Control Current vs. Temperature" characteristics. Therefore, the resistance "R" should be carefully selected to ensure the control voltage exceeds the V_CONT(ON) over the required temperature range.
Input Capacitance C_{IN}

Input Capacitance C_{IN} is required to prevent oscillation and reduce power supply ripple for applications with high power supply impedance or a long power supply line.

Use the C_{IN} value of 4.7µF greater to avoid the problem.

C_{IN} should connect between GND and V_{IN} as short as possible.

Output Capacitance C_{O}

Output capacitor (C_{O}) is required for a phase compensation of the internal error amplifier. The capacitance and the equivalent series resistance (ESR) influence stability of the regulator.

If use a smaller C_{O}, it may cause excess output noise or oscillation of the regulator due to lack of the phase compensation. Therefore, use C_{O} with the recommended capacitance or greater value and connect between V_{O} terminal and GND terminal with minimal wiring.

The recommended capacitance depends on the output voltage. Low voltage regulator requires greater value of the C_{O}. Thus, check the recommended capacitance for each output voltage.

Use of a greater C_{O} reduces output noise and ripple output, and also improves transient response of the output voltage against rapid load change.

This product is designed to work with any capacitor including a low ESR capacitor for the C_{O}; however, refer "Equivalent Series Resistance vs. Output Current" and choose suitable capacitor.

When distance from an IC to load is long, an IC may cause malfunction by wiring capacity and an L ingredient. Please use it after having evaluated it enough.
TYPICAL CHARACTERISTICS

Output Voltage vs. Input Voltage

- **Input Voltage (VIN)**: 2.7 V to 3.4 V
- **Output Voltage (Vo)**: 2.7 V to 3.4 V
- **Current Levels**: Io = 0A, Io = 500mA, Io = 2000mA
- **Conditions**: Ta = 25°C, Co = 4.7uF (Ceramic)

Ground Pin Current vs. Output Current

- **Output Current (Io)**: 0 mA to 3000 mA
- **Ground Pin Current**: 0 mA to 5 mA
- **Conditions**: Ta = 25°C, VIN = 4.0V, Co = 4.7uF (Ceramic)

Dropout Voltage vs. Output Current

- **Output Current (Io)**: 0 mA to 3000 mA
- **Dropout Voltage (dVI_O)**: 0.00 V to 0.40 V
- **Conditions**: Ta = 25°C, Vin = 2.5V, Co = 2.2uF (Ceramic)

Control Current vs. Control Voltage

- **Control Voltage**: 0 V to 4 V
- **Control Current (IC)**: 0 uA to 50 uA
- **Conditions**: Ta = 25°C, VIN = 4.0V, Co = 4.7uF (Ceramic), Io = 500mA

Output Voltage vs. Output Current

- **Output Current (Io)**: 0.1 mA to 3.5 mA
- **Output Voltage (Vo)**: 2.5 V to 3.5 V
- **Conditions**: Ta = 25°C, VIN = 4.0V, Co = 4.7uF (Ceramic)

New Japan Radio Co., Ltd.

Ver.2010-02-08
NJM2819A_3.0V
Load Regulation vs. Output Current

Output Current: Io (mA)
Load Regulation: dVo/dIo (mV)

@: Ta=25°C
Vin=2.5V
Co=4.7µF (Ceramic)

NJM2819A_3.0V
Peak Output Current vs. Input Voltage

Input Voltage: VIN (V)
Peak Output Current: Io MAX (mA)

@: Ta=25°C
Co=4.7µF (Ceramic)

NJM2819A_3.0V
Quiescent Current vs. Input Voltage

Input Voltage: VIN (V)
Quiescent Current: IQ (µA)

@: Ta=25°C
Output is open
Co=4.7µF (Ceramic)
Including Icont

NJM2819A_3.0V
Output Noise Voltage vs. Output Current

Output Current: Io (mA)
Output Noise Voltage: Vn (µVrms)

@ Ta=25°C
VIN =4.0V
Cin=4.7µF (Ceramic)
Co=4.7µF (Ceramic)
LPH: 80kHz

NJM2819A_3.0V
Ripple Rejection Ratio vs. Frequency

Frequency: f (kHz)
Ripple Rejection: RR (dB)

@ Ta=25°C
VIN=4.0V
ein=200mVrms
Cin=4.7µF
Co=4.7µF
Io=0A
Io=100mA
Io=2000mA

NJM2819A_3.0V
Ripple Rejection vs. Output Current

Output Current: Io (mA)
Ripple Rejection: RR (dB)

@ Ta=25°C
VIN=4.0V
ein=200mVrms
Cin=4.7µF
Co=4.7µF
f=1kHz
f=10kHz
NJM2819A_3.0V
Short Circuit Current vs. Temperature

@: VIN=4.0V
Output is short to Ground
Co=4.7uF(Ceramic)

Line Regulation vs. Temperature

@: VIN=4.0-9.0V
Io=100mA
Co=4.7uF(Ceramic)

Load Regulation vs. Temperature

@: VIN=4.0
Io=0-2000mA
Co=4.7uF(Ceramic)

Output Peak Current vs. Temperature

@: VIN=4.0V
Co=4.7uF(Ceramic)

Output Voltage vs. Temperature

@: VIN=4.0V
Io=100mA
Co=4.7uF(Ceramic)
[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.