Low Dropout Voltage Regulator with Reset

GENERAL DESCRIPTION

The NJM2801 is a low dropout voltage regulator with reset function.

It provides up to 150mA of logic supply, and the reset function monitors output voltage of the regulator with 1% accuracy.

It is suitable for local power supply and reset for small microcontroller and other logic chips.

FEATURES

- Output Voltage Accuracy \(V_o = \pm 1.0\% \)
- Reset Voltage Accuracy \(V_{RT} = \pm 1.0\% \)
- Adjust reset delay time with external capacitor.
- Ripple Rejection 60dB typ. (f=1kHz)
- Output Voltage Monitor type
- Open Collector Output
- Internal Short Circuit Current Limit
- Internal Thermal Overload Protection
- Bipolar Technology
- Package Outline SOT89-5 (NJM2801U/U1), SOT-23-5(NJU2801F)

PIN CONFIGURATION

![PIN CONFIGURATION Diagram](image)

EQUIVALENT CIRCUIT

![EQUIVALENT CIRCUIT Diagram](image)
OUTPUT VOLTAGE/ DETECTION VOLTAGE

<table>
<thead>
<tr>
<th>Device Name</th>
<th>Output Voltage</th>
<th>Detection Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJM2801U1-/U/F3328</td>
<td>3.3V</td>
<td>2.8V</td>
</tr>
<tr>
<td>NJM2801U1-/U/F0543</td>
<td>5.0V</td>
<td>4.3V</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>RATINGs</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>VIN</td>
<td>+14</td>
<td>V</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>Pd</td>
<td>SOT-23-5</td>
<td>350(*1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOT89-5</td>
<td>200(*2)</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>Topr</td>
<td>−40→+85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>Tstg</td>
<td>−40→+125</td>
<td>°C</td>
</tr>
</tbody>
</table>

(*1): Mounted on glass epoxy board based on EIA/JEDEC. (114.3x76.2x1.6mm: 2Layers)
(*2): Device itself.

ELECTRICAL CHARACTERISTICS (Vin=Vo+1V, Cin=0.1μF, Co=1μF (Vo≤2.6V: Co=2.2μF) Ta=25°C)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITION</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiescent Current</td>
<td>Io</td>
<td>Io=0mA</td>
<td>–</td>
<td>250</td>
<td>350</td>
<td>μA</td>
</tr>
<tr>
<td>Regulator Block</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage</td>
<td>Vo</td>
<td>Io=30mA</td>
<td>−1.0%</td>
<td>–</td>
<td>+1.0%</td>
<td>V</td>
</tr>
<tr>
<td>Output Current</td>
<td>Io</td>
<td>Vo-0.3V</td>
<td>150</td>
<td>200</td>
<td>–</td>
<td>mA</td>
</tr>
<tr>
<td>Line Regulation</td>
<td>∆Vo/∆Vin</td>
<td>Vin=Vo+1V–Vo+6V, Io=30mA</td>
<td>–</td>
<td>–</td>
<td>0.10</td>
<td>%/V</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>∆Vo/∆Io</td>
<td>Io=0–100mA</td>
<td>–</td>
<td>–</td>
<td>0.03</td>
<td>%/mA</td>
</tr>
<tr>
<td>Dropout Voltage</td>
<td>∆Vin</td>
<td>Io=60mA</td>
<td>–</td>
<td>0.10</td>
<td>0.18</td>
<td>V</td>
</tr>
<tr>
<td>Ripple Rejection</td>
<td>RR</td>
<td>ein=200mVRms, f=1kHz, Io=10mA, Vo=3V</td>
<td>–</td>
<td>60</td>
<td>–</td>
<td>dB</td>
</tr>
<tr>
<td>Output Voltage Temperature</td>
<td>∆Vo/∆T</td>
<td>Ta=0–85°C, Io=10mA</td>
<td>–</td>
<td>±50</td>
<td>–</td>
<td>ppm/°C</td>
</tr>
<tr>
<td>Coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Noise Voltage</td>
<td>Vno</td>
<td>f=10Hz–100kHz, Io=10mA, Vo=3V</td>
<td>–</td>
<td>45</td>
<td>–</td>
<td>μVrms</td>
</tr>
<tr>
<td>Reset Block</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Detection</td>
<td>Vrt</td>
<td>Vin=H→L</td>
<td>−1.0%</td>
<td>–</td>
<td>+1.0%</td>
<td>V</td>
</tr>
<tr>
<td>Hysteresis Voltage</td>
<td>Vrth</td>
<td>Vin=H→L→H</td>
<td>Vrth×3%</td>
<td>Vrth×5%</td>
<td>Vrth×8%</td>
<td>V</td>
</tr>
<tr>
<td>Low Level Output Voltage</td>
<td>rol</td>
<td>Vin=Vr-0.5V, Rl=100kΩ</td>
<td>–</td>
<td>100</td>
<td>300</td>
<td>mV</td>
</tr>
<tr>
<td>Output Leak Current</td>
<td>iorh</td>
<td>Vin=Vr+0.5V</td>
<td>–</td>
<td>–</td>
<td>0.1</td>
<td>μA</td>
</tr>
<tr>
<td>On time Output Current</td>
<td>iorl</td>
<td>Vin=Vr-0.5V, Rl=0Ω</td>
<td>5</td>
<td>–</td>
<td>–</td>
<td>mA</td>
</tr>
<tr>
<td>Reset Output Delay Time</td>
<td>td</td>
<td>Vr=(Vr-0.5V)→(Vr+0.5V), Cg=0.1μF</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>ms</td>
</tr>
<tr>
<td>Operation Voltage Limit</td>
<td>vopl</td>
<td>Vr=0.4V</td>
<td>–</td>
<td>0.9</td>
<td>–</td>
<td>V</td>
</tr>
</tbody>
</table>

The above specification is a common specification for all output voltages.
Therefore, it may be different from the individual specification for a specific output voltage.
When the pull-up of the Vor is carried out to Vin through resistance.
TEST CIRCUIT

![Test Circuit Diagram]

*3 \(V_{os} \leq 2.6 \text{V} \): \(C_{o} = 2.2 \mu \text{F} \) (Ceramic)

TYPICAL APPLICATIONS

![Typical Applications Diagram]

*4 \(V_{os} \leq 2.6 \text{V} \): \(C_{o} = 2.2 \mu \text{F} \)

POWER DISSIPATION vs. AMBIENT TEMPERATURE

![Power Dissipation Graph]

NJM2801F Power Dissipation
(Topr=-40~+85°C, \(T_j = 125°C \))

- On Board(114.3×76.2×1.6mm, FR-4)
- Device itself
NJM2801

ELECTRICAL CHARACTERISTICS

Output Voltage vs. Input Voltage

Output Voltage: $V_o (V)$
Input Voltage: $V_{IN} (V)$

Output Voltage vs. Output Current

Output Current: $I_o (mA)$
Input Voltage: $V_{IN} (V)$

Ground Pin Current vs. Output Current

Ground Pin Current: $I_{GN} (mA)$
Output Current: $I_o (mA)$

Dropout Voltage vs. Output Current

Dropout Voltage: $dV_{I-O} (V)$
Output Current: $I_o (mA)$

Load Regulation vs. Output Current

Load Regulation: $dV_o/dI_o (mV)$
Output Current: $I_o (mA)$

Peak Output Current vs. Input Voltage

Peak Output Current: $I_{O(MAX)} (mA)$
Input Voltage: $V_{IN} (V)$
ELECTRICAL CHARACTERISTICS

Quiescent Current vs. Input Voltage

Output Noise Voltage vs. Output Current

Ripple Rejection Ratio vs. Frequency

Dropout Voltage vs. Temperature
ELECTRICAL CHARACTERISTICS

NJM2801_5V
Quiescent Current v.s. Temperature
@: VIN=6V
Output is open.
Co=1 µF (Ceramic)

Load Regulation v.s. Temperature
@: VIN=6V
Io=0-100mA
CL=1 µF (Ceramic)

Line Regulation v.s. Temperature
@: dVIN=6-11V
Io=30mA
Co=1 µF (Ceramic)

Short Circuit Current v.s. Temperature
@: VIN=6V
Output is short to ground.
Co=1 µF (Ceramic)

Output Leak Current v.s. Temperature
VIN=4.8V
Co=1 µF
Cd=0.1 µF
RL=100kΩ

ON Output Current v.s. Temperature
VIN=3.8V
Co=1 µF
Cd=0.1 µF
RL=0Ω
ELECTRICAL CHARACTERISTICS

Reset Output Delay Time v.s Temperature

- **VIN = 3.8V to 4.8V**
- **CO = 1µF**
- **CD = 0.1µF**

![Graph](image1.png)

Operation Voltage Limit v.s Temperature

- **VIN = 0.4V**
- **CO = 1µF**
- **CD = 0.1µF**

![Graph](image2.png)

Low Level Output Voltage v.s Temperature

- **VIN = 3.8V**
- **CO = 1µF**
- **CD = 0.1µF**
- **RL = 100kΩ**

![Graph](image3.png)

Voltage Detection v.s Temperature

- **VIN = H to L**
- **CO = 1µF**
- **CD = 0.1µF**

![Graph](image4.png)

Hysteresis Voltage v.s Temperature

- **VIN = H to L to H**
- **CO = 1µF**
- **CD = 0.1µF**

![Graph](image5.png)
ELECTRICAL CHARACTERISTICS

NJM2801_5V

Input Transient Response

Output Voltage : \(V_o \) [V]
Input Voltage : \(V_{IN} \) [V]
Time : \(t \) [\(\mu \)s]

@ \(T_a = 25^\circ \text{C} \)
\(I_o = 30 \text{mA} \)
\(C_o = 1 \mu \text{F} \) (Ceramic)

NJM2801_5V

Load Transient Response

Output Voltage : \(V_o \) [V]
Output Current : \(I_o \) [mA]
Time : \(t \) [\(\mu \)s]

@ \(T_a = 25^\circ \text{C} \)
\(V_{IN} = 6 \text{V} \)
\(C_o = 1 \mu \text{F} \) (Ceramic)

[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.