3rd. Over Tone Quartz Crystal Oscillator

GENERAL DESCRIPTION

The NJU6397 series that is a C-MOS IC for quartz crystal oscillator consists of an oscillation amplifier and 3-state output buffer.

The series has three types of A, B and C. The frequency range of the A type is from 75 to 90MHz, and the B type is from 90 to 110MHz, and the C type is from 110 to 135MHz.

The oscillation amplifier realizes very low oscillation stop current with NAND circuit.

The 3-state output buffer is C-MOS compatible.

FEATURES

- Operating Voltage: 2.3 to 3.6V
- Maximum Oscillation Frequency (See Line-up Table)
- High Fan-out: $I_{OH}/I_{OL} = 6mA @V_{DD}=2.5V$
 \[I_{OH}/I_{OL} = 8mA @V_{DD}=3.3V \]
- Oscillation Stop and Output Stand-by Function
- 3-State Output Buffer
- Oscillation Capacitors C_g and C_d on-Die
- Package Outline: Thin-Die/Wafer
- C-MOS Technology

LINE-UP TABLE

<table>
<thead>
<tr>
<th>Type No.</th>
<th>Recommended Oscillation Frequency</th>
<th>Output Frequency</th>
<th>Cg/Cd</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJU6397</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>75 to 90MHz</td>
<td>f_0</td>
<td>11/12pF</td>
</tr>
<tr>
<td>B</td>
<td>90 to 110MHz</td>
<td></td>
<td>9/10pF</td>
</tr>
<tr>
<td>C</td>
<td>110 to 135MHz</td>
<td></td>
<td>8/9pF</td>
</tr>
</tbody>
</table>

Note1) The oscillation frequency range has used NJRC's characteristics authentication crystal for measurement. However, it is not guaranteed.

PAD LOCATION

<table>
<thead>
<tr>
<th>Thin-Die</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CONT</td>
<td></td>
</tr>
<tr>
<td>XT</td>
<td></td>
</tr>
<tr>
<td>V_{SS}</td>
<td></td>
</tr>
<tr>
<td>F_{OUT}</td>
<td></td>
</tr>
</tbody>
</table>

COORDINATES

<table>
<thead>
<tr>
<th>No</th>
<th>Pad Name</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CONT</td>
<td>-178</td>
<td>231</td>
</tr>
<tr>
<td>2</td>
<td>XT</td>
<td>-178</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>XT</td>
<td>-178</td>
<td>-77</td>
</tr>
<tr>
<td>4</td>
<td>V_{SS}</td>
<td>-178</td>
<td>-231</td>
</tr>
<tr>
<td>5</td>
<td>F_{OUT}</td>
<td>206</td>
<td>-231</td>
</tr>
<tr>
<td>8</td>
<td>V_{DD}</td>
<td>206</td>
<td>231</td>
</tr>
</tbody>
</table>

Starting Point: Die Center

Die Size: 0.70x0.75mm

Thin-Die Thickness(C-D): 200±20um
Thin-Die Thickness(C-L): 140±10um
Wafer Thickness(W-H): 200±20um
Wafer Thickness(W-L): 140±10um
Pad Size: 90x90um
Die Substrate: V_{DD} Level
TERMINAL DESCRIPTION

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONT</td>
<td>Oscillation and 3-state Output Buffer Control</td>
</tr>
<tr>
<td>F_OUT</td>
<td>H or OPEN</td>
</tr>
<tr>
<td>L</td>
<td>L Oscillation Stop and High impedance Output</td>
</tr>
<tr>
<td>XT</td>
<td>Quartz Crystal Connecting Terminals</td>
</tr>
<tr>
<td>V_SS</td>
<td>V_SS=0V</td>
</tr>
<tr>
<td>F_OUT</td>
<td>Frequency Output</td>
</tr>
<tr>
<td>V_DD</td>
<td>V_DD=2.5V/3.3V</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V_DD</td>
<td>-0.5 to +7.0</td>
<td>V</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>V_IN</td>
<td>V_SS-0.5 to V_DD+0.5</td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>V_O</td>
<td>-0.5 to V_DD+0.5</td>
<td>V</td>
</tr>
<tr>
<td>Input Current</td>
<td>I_IN</td>
<td>±10</td>
<td>mA</td>
</tr>
<tr>
<td>Output Current</td>
<td>I_O</td>
<td>±25</td>
<td>mA</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>Topr</td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>Tstg</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note2) If the supply voltage (V_DD) is less than 7.0V, the input voltage must not over the V_DD level though 7.0V is limit specified.

Note3) Decoupling capacitor should be connected between V_DD and V_SS due to the stabilized operation for the circuit.
ELECTRICAL CHARACTERISTICS

(Ta=25°C)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Voltage</td>
<td>V_DD</td>
<td></td>
<td>2.3</td>
<td>3.6</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Recommended Oscillation Frequency</td>
<td>f</td>
<td>A type Note4)</td>
<td>75</td>
<td>90</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B type Note4)</td>
<td>90</td>
<td>110</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C type Note4)</td>
<td>110</td>
<td>135</td>
<td></td>
<td>MHz</td>
</tr>
</tbody>
</table>

Note4) The oscillation frequency range has used NJRC’s characteristics authentication crystal for measurement. However it is not guaranteed.

A,B,C and E type

(V_DD=2.5V,Ta=25°C)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Current</td>
<td>I_DD1</td>
<td>A type, fosc=90MHz, C_L=15pF</td>
<td>10</td>
<td>20</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B type, fosc=110MHz, C_L=15pF</td>
<td>10</td>
<td>20</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C type, fosc=135MHz, C_L=15pF</td>
<td>15</td>
<td>30</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Oscillation Stopping Current</td>
<td>I_DD2</td>
<td>CONT=V_SS, No load</td>
<td>2</td>
<td>5</td>
<td></td>
<td>uA</td>
</tr>
<tr>
<td>Stand-by Current</td>
<td>I_ST</td>
<td>CONT=XT=V_SS, No load Note5)</td>
<td>1</td>
<td></td>
<td></td>
<td>uA</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>V_IN</td>
<td></td>
<td>2.0</td>
<td>2.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V_IL</td>
<td></td>
<td>0</td>
<td>0.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Output Current</td>
<td>I_OH</td>
<td>V_OH=2.2V</td>
<td>6</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>I OL</td>
<td>V_OH=0.3V</td>
<td>6</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Input Current</td>
<td>I_IN</td>
<td>CONT=0.8V_DD</td>
<td>7.5</td>
<td>12.0</td>
<td></td>
<td>uA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CONT=0.2V_DD</td>
<td>1.2</td>
<td>2.0</td>
<td></td>
<td>uA</td>
</tr>
<tr>
<td>3-state Off Leakage Current</td>
<td>I_OZ</td>
<td>CONT=V_SS, F_OUT= V_DD or V_SS</td>
<td>±0.1</td>
<td></td>
<td></td>
<td>uA</td>
</tr>
<tr>
<td>Feedback Resistance</td>
<td>Rf</td>
<td>A type</td>
<td>3.8</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B type</td>
<td>3.8</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C type</td>
<td>2.9</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>Internal Capacitor</td>
<td>Cg/Cd</td>
<td>A type, fosc=90MHz</td>
<td>11/12</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B type, fosc=110MHz</td>
<td>9/10</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C type, fosc=135MHz</td>
<td>8/9</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Oscillation Frequency</td>
<td>f</td>
<td>A type Note6)</td>
<td>90</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B type Note6)</td>
<td>110</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C type Note6)</td>
<td>135</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Output Signal Symmetry</td>
<td>SYM</td>
<td>C_L=15pF, @V_DD/2</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>%</td>
</tr>
<tr>
<td>Output Signal Rise Time</td>
<td>tr</td>
<td>C_L=15pF, 10% to 90%</td>
<td>3</td>
<td>4</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Output Signal Fall Time</td>
<td>tf</td>
<td>C_L=15pF, 90% to 10%</td>
<td>3</td>
<td>4</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Output Disable time</td>
<td>t_PILZ</td>
<td>C_L=15pF, R_UP=10kΩ</td>
<td>200</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Output Enable time</td>
<td>t_PZL</td>
<td>C_L=15pF, R_UP=10kΩ</td>
<td>200</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

Note5) Excluding input current on CONT Terminal.

Note6) The oscillation frequency has used NJRC’s characteristics authentication crystal for measurement. However it is not guaranteed.
NJU6397 Series

(V_{DD}=3.3V, Ta=25°C)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Current</td>
<td>I_{DD1}</td>
<td>A type, fosc=90MHz, C_L=15pF</td>
<td>13</td>
<td>25</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B type, fosc=110MHz, C_L=15pF</td>
<td>13</td>
<td>28</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C type, fosc=135MHz, C_L=15pF</td>
<td>18</td>
<td>35</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Oscillation Stopping Current</td>
<td>I_{DD2}</td>
<td>CONT=V_{SS}, No load</td>
<td>5</td>
<td>10</td>
<td>uA</td>
<td></td>
</tr>
<tr>
<td>Stand-by Current</td>
<td>I_{ST}</td>
<td>CONT=XT=V_{SS}, No load</td>
<td>5</td>
<td>10</td>
<td>uA</td>
<td></td>
</tr>
<tr>
<td>Input Voltage</td>
<td>V_{IH}</td>
<td>2.3</td>
<td>3.3</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_{IL}</td>
<td>0</td>
<td>1.0</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Current</td>
<td>I_{OH}</td>
<td>V_{OH}=2.97V</td>
<td>8</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_{OL}</td>
<td>V_{OL}=0.33V</td>
<td>8</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Current</td>
<td>I_{IN}</td>
<td>CONT=0.8V_{DD}</td>
<td>12.5</td>
<td>18.0</td>
<td>uA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CONT=0.2V_{DD}</td>
<td>2.5</td>
<td>3.5</td>
<td>uA</td>
<td></td>
</tr>
<tr>
<td>3-state Off Leakage Current</td>
<td>I_{OZ}</td>
<td>CONT=V_{SS}, F_{OUT}=V_{DD} or V_{SS}</td>
<td>±0.1</td>
<td>uA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedback Resistance</td>
<td>R_{f}</td>
<td>A type</td>
<td>3.8</td>
<td>kΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B type</td>
<td>3.8</td>
<td>kΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C type</td>
<td>2.9</td>
<td>kΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal Capacitor</td>
<td>C_{g/Cd}</td>
<td>A type, fosc=90MHz</td>
<td>11/12</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B type, fosc=110MHz</td>
<td>9/10</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C type, fosc=135MHz</td>
<td>8/9</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oscillation Frequency</td>
<td>f</td>
<td>A type Note6)</td>
<td>90</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B type Note6)</td>
<td>110</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C type Note6)</td>
<td>135</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Signal Symmetry</td>
<td>SYM</td>
<td>C_L=15pF, @V_{DD}/2</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>%</td>
</tr>
<tr>
<td>Output Signal Rise Time</td>
<td>tr</td>
<td>C_L=15pF, 10% to 90%</td>
<td>2</td>
<td>3</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Output Signal Fall Time</td>
<td>tf</td>
<td>C_L=15pF, 90% to 10%</td>
<td>2</td>
<td>3</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Output Disable time</td>
<td>I_{PLZ}</td>
<td>C_L=15pF, R_{UP}=10kΩ</td>
<td>150</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Enable Time</td>
<td>I_{PZL}</td>
<td>C_L=15pF, R_{UP}=10kΩ</td>
<td>150</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note5) Excluding input current on CONT Terminal.

Note6) The oscillation frequency has used NJRC's characteristics authentication crystal for measurement. However it is not guaranteed.
MEASUREMENT CIRCUITS

(1) Output Signal Symmetry ($C_L = 15\text{pF}$)

![Circuit Diagram](image)

(2) Output Signal Rise/Fall Time ($C_L = 15\text{pF}$)

![Circuit Diagram](image)

(3) Output Disable/Enable Time ($C_L = 15\text{pF}, R_{UP} = 10\text{k}\Omega$)

![Circuit Diagram](image)

[CAUTION]
The specifications on this data book are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this data book are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.