LOW DROPOUT VOLTAGE REGULATOR

■ GENERAL DESCRIPTION

The NJM2865/66 is a 100mA output low dropout voltage regulator with ON/OFF control. Advanced Bipolar technology achieves low noise, high ripple rejection and low quiescent current. Small packaging, 1µF small decoupling capacitor, built-in noise bypass capacitor make the NJM2865/66 suitable for space conscious applications.

■ FEATURES

- High Ripple Rejection 75dB typ. (f=1kHz Vo=3V Version)
- Output Noise Voltage Vno=45µVrms typ.
- Output capacitor with 1.0µF ceramic capacitor (Vo≥2.7V)
- Output Current Io(max.)=100mA
- High Precision Output Vo±1.0%
- Low Dropout Voltage 0.10V typ. (Io=60mA)
- Input Voltage Range +2.3V ∼ +14V(Vo≤2.0 Version)
- ON/OFF Control (Active High)
- Internal Short Circuit Current Limit
- Internal Thermal Overload Protection
- Bipolar Technology
- Package Outline SC88A (NJM2865F3), SOT-23-5 (NJM2865F/66F)

■ PIN CONFIGURATION

1. CONTROL 2. GND 3. NC 4. VOUT 5. VIN

1. VIN 2. GND 3. CONTROL 4. NC 5. VOUT

NJM2865F3 / NJM2865F NJM2866F

■ EQUIVALENT CIRCUIT
OUTPUT VOLTAGE RANK LIST

<table>
<thead>
<tr>
<th>Device Name</th>
<th>V(_{OUT})</th>
<th>Device Name</th>
<th>V(_{OUT})</th>
<th>Device Name</th>
<th>V(_{OUT})</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJM2865F3-/F15</td>
<td>1.5V</td>
<td>NJM2865F3-/F29</td>
<td>2.9V</td>
<td>NJM2865F3-/F38</td>
<td>3.8V</td>
</tr>
<tr>
<td>NJM2865F3-/F18</td>
<td>1.8V</td>
<td>NJM2865F3-/F03</td>
<td>3.0V</td>
<td>NJM2865F3-/F04</td>
<td>4.0V</td>
</tr>
<tr>
<td>NJM2865F3-/F21</td>
<td>2.1V</td>
<td>NJM2865F3-/F31</td>
<td>3.1V</td>
<td>NJM2865F3-/F445</td>
<td>4.45V</td>
</tr>
<tr>
<td>NJM2865F3-/F24</td>
<td>2.4V</td>
<td>NJM2865F3-/F32</td>
<td>3.2V</td>
<td>NJM2865F3-/F46</td>
<td>4.6V</td>
</tr>
<tr>
<td>NJM2865F3-/F25</td>
<td>2.5V</td>
<td>NJM2865F3-/F33</td>
<td>3.3V</td>
<td>NJM2865F3-/F48</td>
<td>4.8V</td>
</tr>
<tr>
<td>NJM2865F3-/F26</td>
<td>2.6V</td>
<td>NJM2865F3-/F34</td>
<td>3.4V</td>
<td>NJM2865F3-/F05</td>
<td>5.0V</td>
</tr>
<tr>
<td>NJM2865F3-/F27</td>
<td>2.7V</td>
<td>NJM2865F3-/F35</td>
<td>3.5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NJM2865F3-/F28</td>
<td>2.8V</td>
<td>NJM2865F3-/F36</td>
<td>3.6V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device Name</th>
<th>V(_{OUT})</th>
<th>Device Name</th>
<th>V(_{OUT})</th>
<th>Device Name</th>
<th>V(_{OUT})</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJM2866F15</td>
<td>1.5V</td>
<td>NJM2866F29</td>
<td>2.9V</td>
<td>NJM2866F38</td>
<td>3.8V</td>
</tr>
<tr>
<td>NJM2866F18</td>
<td>1.8V</td>
<td>NJM2866F03</td>
<td>3.0V</td>
<td>NJM2866F04</td>
<td>4.0V</td>
</tr>
<tr>
<td>NJM2866F21</td>
<td>2.1V</td>
<td>NJM2866F31</td>
<td>3.1V</td>
<td>NJM2866F445</td>
<td>4.45V</td>
</tr>
<tr>
<td>NJM2866F24</td>
<td>2.4V</td>
<td>NJM2866F32</td>
<td>3.2V</td>
<td>NJM2866F46</td>
<td>4.6V</td>
</tr>
<tr>
<td>NJM2866F25</td>
<td>2.5V</td>
<td>NJM2866F33</td>
<td>3.3V</td>
<td>NJM2866F48</td>
<td>4.8V</td>
</tr>
<tr>
<td>NJM2866F26</td>
<td>2.6V</td>
<td>NJM2866F34</td>
<td>3.4V</td>
<td>NJM2866F05</td>
<td>5.0V</td>
</tr>
<tr>
<td>NJM2866F27</td>
<td>2.7V</td>
<td>NJM2866F35</td>
<td>3.5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NJM2866F28</td>
<td>2.8V</td>
<td>NJM2866F36</td>
<td>3.6V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS (\(Ta=25^\circ\)C)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>RATINGS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>(V_{IN})</td>
<td>+14</td>
<td>V</td>
</tr>
<tr>
<td>Control Voltage</td>
<td>(V_{CONT})</td>
<td>+14(^{(*1)})</td>
<td>V</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>(P_{D})</td>
<td>SC88A 250(^{(*2)})</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOT-23-5 200(^{(*3)})</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>(T_{opr})</td>
<td>-40(\sim)85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>(T_{stg})</td>
<td>-40(\sim)125</td>
<td>°C</td>
</tr>
</tbody>
</table>

\(^{(*1)}\): When input voltage is less than +14V, the absolute maximum control voltage is equal to the input voltage.

\(^{(*2)}\): Mounted on glass epoxy board based on EIA/JEDEC. (114.3x76.2x1.6mm: 2Layers)

\(^{(*3)}\): Device itself.

Operating voltage

\(V_{IN}=+2.3\text{V} - +14.0\text{V}\) (In case of \(V_{O}<2.1\text{V}\))
ELECTRICAL CHARACTERISTICS

\((V_o \geq 2.0V\) version: \(V_{IN} = V_o + 1V, C_{IN} = 0.1\mu F, C_o = 2.2\mu F (C_o = 4.7\mu F: V_o \leq 1.6V), T_a = 25^\circ C\)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITION</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage</td>
<td>Vo</td>
<td>Io=30mA</td>
<td>-1.0%</td>
<td>–</td>
<td>+1.0%</td>
<td>V</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>I_o</td>
<td>Io=0mA, expect I_cont</td>
<td>–</td>
<td>120</td>
<td>180</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Quiescent Current at Control OFF</td>
<td>I(OFF)</td>
<td>V_CONT=0V</td>
<td>–</td>
<td>–</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>Output Current</td>
<td>Io</td>
<td>V_o-0.3V</td>
<td>100</td>
<td>130</td>
<td>–</td>
<td>mA</td>
</tr>
<tr>
<td>Line Regulation</td>
<td>(\Delta V_o/\Delta V_N)</td>
<td>(V_{IN} = V_o + 1V \sim V_o + 6V, Io=30mA)</td>
<td>–</td>
<td>–</td>
<td>0.10</td>
<td>%V</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>(\Delta V_o/\Delta Io)</td>
<td>Io=0 \sim 60mA</td>
<td>–</td>
<td>–</td>
<td>0.03</td>
<td>%/mA</td>
</tr>
<tr>
<td>Dropout Voltage</td>
<td>(\Delta V_{LO})</td>
<td>Io=60mA</td>
<td>–</td>
<td>0.10</td>
<td>0.18</td>
<td>V</td>
</tr>
<tr>
<td>Ripple Rejection</td>
<td>RR</td>
<td>(\varepsilon = 200mVrms, f=1kHz, Io=10mA, V_o=3V)</td>
<td>–</td>
<td>75</td>
<td>–</td>
<td>dB</td>
</tr>
<tr>
<td>Average Temperature</td>
<td>CoV</td>
<td>(Ta=0 \sim 85^\circ C, Io=10mA)</td>
<td>–</td>
<td>±50</td>
<td>–</td>
<td>ppm/(^\circ C)</td>
</tr>
<tr>
<td>Coefficient of Output</td>
<td>CoV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Noise Voltage</td>
<td>V_NO</td>
<td>(f=10Hz \sim 80kHz, Io=10mA)</td>
<td>–</td>
<td>45</td>
<td>–</td>
<td>(\mu Vrms)</td>
</tr>
<tr>
<td>Control Current</td>
<td>I_CONT</td>
<td>V_CONT=1.6V, Io=0mA</td>
<td>–</td>
<td>–</td>
<td>12</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Control Voltage for ON-state</td>
<td>V_CONT(ON)</td>
<td></td>
<td>1.6</td>
<td>–</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Control Voltage for OFF-state</td>
<td>V_CONT(OFF)</td>
<td></td>
<td>–</td>
<td>–</td>
<td>0.6</td>
<td>V</td>
</tr>
</tbody>
</table>

\((V_o \leq 2.0V\) version: \(V_{IN} = V_o + 1V, C_{IN} = 0.1\mu F, C_o = 2.2\mu F (C_o = 4.7\mu F: V_o \leq 1.6V), T_a = 25^\circ C\)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITION</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage</td>
<td>Vo</td>
<td>Io=30mA</td>
<td>-1.0%</td>
<td>–</td>
<td>+1.0%</td>
<td>V</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>I_o</td>
<td>Io=0mA, expect I_cont</td>
<td>–</td>
<td>120</td>
<td>180</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Quiescent Current at Control OFF</td>
<td>I(OFF)</td>
<td>V_CONT=0V</td>
<td>–</td>
<td>–</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>Output Current</td>
<td>Io</td>
<td>V_o-0.3V</td>
<td>100</td>
<td>130</td>
<td>–</td>
<td>mA</td>
</tr>
<tr>
<td>Line Regulation</td>
<td>(\Delta V_o/\Delta V_N)</td>
<td>(V_{IN} = V_o + 1V \sim V_o + 6V, Io=30mA)</td>
<td>–</td>
<td>–</td>
<td>0.10</td>
<td>%V</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>(\Delta V_o/\Delta Io)</td>
<td>Io=0 \sim 60mA</td>
<td>–</td>
<td>–</td>
<td>0.03</td>
<td>%/mA</td>
</tr>
<tr>
<td>Ripple Rejection</td>
<td>RR</td>
<td>(\varepsilon = 200mVrms, f=1kHz, Io=10mA, V_o=3V)</td>
<td>–</td>
<td>80</td>
<td>–</td>
<td>dB</td>
</tr>
<tr>
<td>Average Temperature</td>
<td>CoV</td>
<td>(Ta=0 \sim 85^\circ C, Io=10mA)</td>
<td>–</td>
<td>±50</td>
<td>–</td>
<td>ppm/(^\circ C)</td>
</tr>
<tr>
<td>Coefficient of Output</td>
<td>CoV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Noise Voltage</td>
<td>V_NO</td>
<td>(f=10Hz \sim 80kHz, Io=10mA)</td>
<td>–</td>
<td>27</td>
<td>–</td>
<td>(\mu Vrms)</td>
</tr>
<tr>
<td>Control Current</td>
<td>I_CONT</td>
<td>V_CONT=1.6V, Io=0mA</td>
<td>–</td>
<td>–</td>
<td>12</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Control Voltage for ON-state</td>
<td>V_CONT(ON)</td>
<td></td>
<td>1.6</td>
<td>–</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Control Voltage for OFF-state</td>
<td>V_CONT(OFF)</td>
<td></td>
<td>–</td>
<td>–</td>
<td>0.6</td>
<td>V</td>
</tr>
</tbody>
</table>

The above specification is a common specification for all output voltages. Therefore, it may be different from the individual specification for a specific output voltage.
NJM2865/66

TEST CIRCUIT

*4 1.6V<Vo≤2.6V version: Co=2.2μF(ceramic)
Vo≤1.6V version: 4.7μF(ceramic)
TYPICAL APPLICATION

1. In the case where ON/OFF Control is not required:

 ![Diagram showing a circuit with a control terminal connected to the VIN terminal.](image)

 - **Connect control terminal to VIN terminal**

2. In use of ON/OFF CONTROL:

 ![Diagram showing a circuit with a control terminal connected to the VIN terminal and a pull-up resistor inserted.](image)

 - **State of control terminal:**
 - "H" → output is enabled.
 - "L" or "open" → output is disabled.

 - **In the case of using a resistance "R" between VIN and control.**
 - The current flow into the control terminal while the IC is ON state (I_{CONT}) can be reduced when a pull up resistance "R" is inserted between VIN and the control terminal.
 - The minimum control voltage for ON state (V_{CONT(ON)}) is increased due to the voltage drop caused by I_{CONT} and the resistance "R". The I_{CONT} is temperature dependence as shown in the "Control Current vs. Temperature" characteristics. Therefore, the resistance "R" should be carefully selected to ensure the control voltage exceeds the V_{CONT(ON)} over the required temperature range.
POWER DISSIPATION vs. AMBIENT TEMPERATURE

NJM2865/66F Power Dissipation
(Topr=−40〜+85°C, Tj=125°C, PD=200mW(Ta≤25°C))

NJM2865F3 Power Dissipation
(Topr=−40〜+85°C, Tj=125°C)

Device itself

On Board(114.3×76.2×1.6mm, FR-4)
- ELECTRICAL CHARACTERISTICS -

Load Regulation vs. Output Current
- @ Ta=25°C
- VIN=4.0V
- Co=1.0µF (Ceramic)

Peak Output Current vs. Input Voltage
- @ Ta=25°C
- VIN=4.0V
- Co=1.0µF (Ceramic)

Quiescent Current vs. Input Voltage
- @ Ta=25°C
- Output is open.
- Co=1.0µF (Ceramic)
- including Icont

Output Noise Voltage vs. Output Current
- @ Ta=25°C
- VIN=4.0V
- LPF: 80kHz
- Co=1.0µF
- Co=2.2µF

Ripple Rejection Ratio vs. Frequency
- @ Ta=25°C
- VIN=4.0V
- Co=1.0µF (Ceramic)
- Io=0mA
- Io=10mA
- Io=30mA
- f=1kHz
- f=10kHz
ELECTRICAL CHARACTERISTICS

Equivalent Series Resistance vs. Output Current

- **Equivalent Series Resistance (Ω)**
 - Output Current: $I_o (mA)$
 - Temperature: $T_a (°C)$
 - Capacitor: $C_o = 1.0 \mu F$ (Ceramic)

Dropout Voltage vs. Temperature

- **Dropout Voltage (V_D) (V)**
 - Output Current: $I_o = 60mA$
 - Capacitor: $C_o = 1.0 \mu F$ (Ceramic)

Output Voltage vs. Temperature

- **Output Voltage (V_o) (V)**
 - Input Voltage: $V_iN = 4.0V$
 - Output: Open
 - Capacitor: $C_o = 1.0 \mu F$ (Ceramic)

Control Voltage vs. Temperature

- **Control Voltage (V_{CONT}) (V)**
 - Input Voltage: $V_iN = 4V$
 - Output: Open
 - Capacitor: $C_o = 1.0 \mu F$ (Ceramic)

Control Current vs. Temperature

- **Control Current (I_{CONT}) (µA)**
 - Input Voltage: $V_iN = 4V$
 - Output: Open
 - Capacitor: $C_o = 1.0 \mu F$ (Ceramic)

New Japan Radio Co., Ltd.
ELECTRICAL CHARACTERISTICS

Quiescent Current v.s. Temperature
- @: $V_{IN}=4.0\,V$
- Output is open.
- $C_o=1.0\,\mu F$ (Ceramic)

Short Circuit Current v.s. Temperature
- @: $V_{IN}=4.0\,V$
- Output is short to ground.
- $C_o=1.0\,\mu F$ (Ceramic)

Line Regulation v.s. Temperature
- @: $V_{IN}=4.0-9.0\,V$
- $I_o=30\,mA$
- $C_o=1.0\,\mu F$ (Ceramic)

Load Regulation v.s. Temperature
- @: $V_{IN}=4.0\,V$
- $I_o=0-60\,mA$
- $C_o=1.0\,\mu F$ (Ceramic)

Output Voltage v.s. Temperature
- @: $V_{IN}=4.0\,V$
- $I_o=30\,mA$
- $C_o=1.0\,\mu F$ (Ceramic)
ELECTRICAL CHARACTERISTICS

ON/OFF Transient Response

Output Voltage : V_o [V]
Control Voltage : V_o [V]
Time : t [mS]

@: $T_a=25^\circ C$
$V_{DD}=4.0V$
$C_o=1.0\mu F$ (Ceramic)
$Io=30mA$

ON/OFF Transient Response without load

Output Voltage : V_o [V]
Control Voltage : V_o [V]
Time : t [s]

@: $T_a=25^\circ C$
$V_{DD}=4.0V$
$C_o=1.0\mu F$ (Ceramic)
$Io=0mA$

Load Transient Response

Output Voltage : V_o [V]
Output Current : I_o [mA]
Time : t [μs]

@: $T_a=25^\circ C$
$V_{DD}=4.0V$
$C_o=1.0\mu F$ (Ceramic)

Line Transient Response

Output Voltage : V_o [V]
Input Voltage : V_{IN} [V]
Time : t [μs]

@: $T_a=25^\circ C$
$V_{DD}=4.0V$
$C_o=1.0\mu F$ (Ceramic)

[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.