Negative Output Low Drop Out voltage regulator

GENERAL DESCRIPTION

The NJM2827 is a negative output low dropout regulator. Advanced bipolar technology achieves low noise, high precision voltage and high ripple rejection. It has soft-start and shunt SW function. 1.0\(\mu\)F Output capacitor and small package can make NJM2827 suitable for portable items.

FEATURES

- **Low Dropout Voltage**: \(0.13\text{V} \text{ (typ.)} @ I_o = 60\text{mA}\)
- **High Precision Output**: \(\pm 1.5\%\)
- **High Ripple Rejection**: \(65\text{dB (typ.)} @ f = 1\text{kHz}, V_o = -7\text{V Version}\)
- **Output capacitor with 1.0\(\mu\)F ceramic capacitor.**
- **Output Current**: \(I_o (\text{max.}) = 100\text{mA}\)
- **Soft-start Function**
- **Shunt SW Function**
- **Internal Thermal Overload Protection**
- **Internal Short Circuit Current Limit**
- **Bipolar Technology**
- **Package Outline**: SC88A

PIN CONFIGURATION

```
1. GND
2. V_IN
3. V_OUT
4. NC
5. CS
```

BLOCK DIAGRAM
NJM2827

■ OUTPUT VOLTAGE RANK LIST

<table>
<thead>
<tr>
<th>Device Name</th>
<th>V_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJM2827F3-14</td>
<td>-1.4V</td>
</tr>
<tr>
<td>NJM2827F3-15</td>
<td>-1.5V</td>
</tr>
<tr>
<td>NJM2827F3-05</td>
<td>-5.0V</td>
</tr>
<tr>
<td>NJM2827F3-06</td>
<td>-6.0V</td>
</tr>
<tr>
<td>NJM2827F3-07</td>
<td>-7.0V</td>
</tr>
<tr>
<td>NJM2827F3-75</td>
<td>-7.5V</td>
</tr>
<tr>
<td>NJM2827F3-08</td>
<td>-8.0V</td>
</tr>
<tr>
<td>NJM2827F3-10</td>
<td>-10.0V</td>
</tr>
</tbody>
</table>

Output voltage options available: -1.4 ~ -10.0V

■ ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>RATINGS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>V_{IN}</td>
<td>-14</td>
<td>V</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_{D}</td>
<td>250(*1)</td>
<td>mW</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>Topr</td>
<td>-40 ~ +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{stg}</td>
<td>-40 ~ +125</td>
<td>°C</td>
</tr>
</tbody>
</table>

(*1): Mount on EIA/JEDEC STANDARD Test board (76.2*114.3*1.6mm, 2layers, FR-4)

■ Operating voltage

V_{IN}=-3.2 ~ -12V (In case of V_{o}>-3.0V version)

■ ELECTRICAL CHARACTERISTICS

(Vo<2.2V Version: V_{IN}=Vo-1V, C_{IN}=0.1μF, C_{O}=1.0μF, Ta=25°C)
(Vo≥2.2V Version: V_{IN}=-3.2V, C_{IN}=0.1μF, C_{O}=2.2μF(Vo≥2.0V: C_{O}=4.7μF), Ta=25°C)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage</td>
<td>Vo</td>
<td>+1.5%</td>
<td>-</td>
<td>-1.5%</td>
<td>V</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>I_{Q}</td>
<td>Io=0mA</td>
<td>-</td>
<td>130</td>
<td>200</td>
</tr>
<tr>
<td>Output Current</td>
<td>Io</td>
<td>V={O+0.3V</td>
<td>100</td>
<td>130</td>
<td>-</td>
</tr>
<tr>
<td>Line Regulation</td>
<td>ΔVo/ΔV_{IN}</td>
<td>V_{IN}=Vo-1V ~ -12V(V_{O}< -2.2V)</td>
<td>-</td>
<td>-</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{IN}=3.2V ~ -12V(V_{O} ≥ -2.2V)</td>
<td>Io=30mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Regulation</td>
<td>ΔVo/ΔIo</td>
<td>Io=0 ~ 60mA</td>
<td>-</td>
<td>-</td>
<td>0.03</td>
</tr>
<tr>
<td>Dropout Voltage(*2)</td>
<td>ΔV_{O}</td>
<td>Io=60mA</td>
<td>-</td>
<td>0.13</td>
<td>0.23</td>
</tr>
<tr>
<td>Ripple Rejection</td>
<td>RR</td>
<td>V_{IN}=Vo-1V ~ -12V(V_{O} ≤ -3.0V)</td>
<td>-</td>
<td>65</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{IN}=4.0V ~ -12V(V_{O} > -3.0V)</td>
<td>ein=200mVrms, f=1kHz, Io=10mA, V_{O}=7V Version</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Temperature Coefficient of Output Voltage</td>
<td>ΔVo/ΔTa</td>
<td>Ta=0 ~ 85°C, Io=10mA</td>
<td>-</td>
<td>±50</td>
<td>-</td>
</tr>
<tr>
<td>Output Noise Voltage</td>
<td>V_{NO}</td>
<td>f=10Hz ~ 80kHz, Io=10mA, V_{O}=7V Version</td>
<td>-</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>CS Terminal Charge Current</td>
<td>Ics</td>
<td>V_{CS}=0V</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>V_{IN}</td>
<td>-12</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
</tbody>
</table>

(*2): Excludes V_{o}>-3.0V version.

The above specification is a common specification for all output voltages. Therefore, it may be different from the individual specification for a specific output voltage.
TEST CIRCUIT

```
*3 \(-2.2\text{V} \leq V_o \leq -2.0\text{V} \) version: \( C_o = 2.2\mu\text{F} \) (Ceramic)
\( V_o > -2.0\text{V} \) version: \( C_o = 4.7\mu\text{F} \) (Ceramic)
```
TYPICAL APPLICATIONS

![Circuit Diagram](image)

*• Input Capacitance \(C_{IN} \)

Input capacitance \(C_{IN} \) is required to prevent oscillation and reduce power supply ripple for applications with high power supply impedance or a long power supply line.

Use the \(C_{IN} \) value of 0.1\(\mu \)F greater to avoid the problem.

\(C_{IN} \) should connect between GND and \(V_{IN} \) as short as possible.

*• Output Capacitance \(C_{O} \)

Output capacitor (\(C_{O} \)) is required for a phase compensation of the internal error amplifier. The capacitance and the equivalent series resistance (ESR) influences stability of the regulator.

This product is designed to work with a low ESR capacitor for the \(C_{O} \); however, use of recommended capacitance or greater value is essential for stable operation.

Use of a smaller \(C_{O} \) may cause excess output noise or oscillation of the regulator due to lack of the phase compensation.

Therefore, use \(C_{O} \) with the recommended capacitance or greater value and connect between \(V_{O} \) terminal and GND terminal with minimal wiring. The recommended capacitance depends on the output voltage. Low voltage regulator requires greater value of the \(C_{O} \). Thus, check the recommended capacitance for each output voltage.

Use of a greater \(C_{O} \) reduces output noise and ripple output, and also improves transient response of the output voltage against rapid load change.
Soft-start function

Capacitance Cs connect between CS pin and GND for the following.
- Control at risetime of output voltage.
- Reduces inrush current at output ON.

When the soft start function is not used, CS pin should be open.

1. Cs capacitance vs risetime of output voltage
 Calculation: risetime of output voltage $\Delta t \approx 213 \times Cs(\mu F)$

2. Inrush current at control ON

 The peak value of the inrush current can be limited according to the capacitance of the Cs.

 ![Inrush current wave](image)

 * This characteristic is one example. It is necessary to examine the characteristic with an actual circuit because there is an influence by the characteristic such as output voltage/output capacitor.*
POWER DISSIPATION vs. AMBIENT TEMPERATURE

NJM2827F3 Power Dissipation
(Topr = -40 ~ +85°C, Tj = 125°C)

Ambient Temperature Ta(°C) vs. Power Dissipation

- Layers board (76.2×114.3×1.6mm, FR-4)
TYPICAL CHARACTERISTICS

NJM2827/7.0V
Output Voltage vs. Input Voltage

Input Voltage : V_in (V)

Output Voltage : V_out (V)

@ Ta=25°C
C=1.0μF (Ceramic)

Io=0A
Io=30mA
Io=100mA

NJM2827/7.0V
Output Voltage vs. Output Current

Output Voltage : V_out (V)

Input Current : I (mA)

@ Ta=25°C
V_in=8.0V
C=1.0μF (Ceramic)

NJM2827/7.0V
Ground Pin Current vs. Output Current

Ground Pin Current : I_{G}(mA)

Output Current : I_o (mA)

@ Ta=25°C
V_in=8.0V
C=1.0μF (Ceramic)

NJM2827/7.0V
Dropout Voltage vs. Output Current

Dropout Voltage : V_{drop} (V)

Output Current : I_o (mA)

@ Ta=25°C
V_in=8.0V
C=1.0μF (Ceramic)

NJM2827/7.0V
Load Regulation vs. Output Current

Load Regulation : V_{load} (mV)

Output Current : I_o (mA)

@ Ta=25°C
V_in=8.0V
C=1.0μF (Ceramic)

NJM2827/7.0V
Peak Output Current vs. Input Voltage

Peak Output Current : I_{peak} (mA)

Input Voltage : V_in (V)

@ Ta=25°C
V_in=8.0V
C=1.0μF (Ceramic)
NJM2827

Quiescent Current vs. Input Voltage

@: $T_a = 25^\circ C$

Output is open.

$C_o = 1.0 \mu F$ (Ceramic)

Output Noise Voltage vs. Output Current

@: $T_a = 25^\circ C$

$V_{IN} = -8.0V$

$C_o = 1.0 \mu F$

Ripple Rejection Ratio vs. Frequency

@: $T_a = 25^\circ C$

$V_{IN} = -8.0V$

$e_{in} = 200mV_{rms}$

$C_o = 1.0 \mu F$ (Ceramic)

Ripple Rejection vs. Output Current

@: $T_a = 25^\circ C$

$V_{IN} = -8.0V$

$e_{in} = 200mV_{rms}$

$C_o = 1.0 \mu F$ (Ceramic)

Dropout Voltage vs. Temperature

@: $I_o = 60mA$

$C_o = 1.0 \mu F$ (Ceramic)

Equivalent Series Resistance vs. Output Current

@: $T_a = 25^\circ C$

$C_o = 1.0 \mu F$ (Ceramic)

STABLE REGION
Output Voltage vs. Temperature
@V_IN = -8.0V
Io = 30mA
Co = 1.0uF (Ceramic)

Quiescent Current vs. Temperature
@V_IN = -8.0V
Output is open.
Co = 1.0uF (Ceramic)

Line Regulation vs. Temperature
@V_IN = -8.0V
Io = 30mA
Co = 1.0uF (Ceramic)

Load Regulation vs. Temperature
@V_IN = -8.0V
Io = 0-60mA
Co = 1.0uF (Ceramic)

CS Charge Current vs. Temperature
@V_IN = -8.0V
CS is short to ground.
Co = 1.0uF (Ceramic)
[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.