NJM2820, NJM2821, NJM2822

ADJUSTABLE HIGH PRECISION SHUNT REGULATOR

■ GENERAL DESCRIPTION

The NJM2820/2821/2822 is a 1.25V precision shunt regulator.

High precision voltage accuracy of ±0.7%* is realized by the total optimization from chip design to packaging. In addition, it features low cathode current of 80μA for low current operation.

It is suitable for AC-DC converter secondary circuit, reference voltage applications for A/D and D/A converters, and other applications where precision reference is required.

■ FEATURES

● High Precision Voltage Reference 1.250V±0.7%
● Flow Soldering*
● Minimum Input Current 80μA typ.
● Operating Voltage V_REF to 13V
● Adjustable Output Voltage
● Bipolar Technology
● Package Outline MTP5

■ BLOCK DIAGRAM

![Block Diagram](image)

■ PACKAGE OUTLINE

![Package Outline](image)

NJM2820F
NJM2821F
NJM2822F

■ PIN CONFIGURATION

![Pin Configuration](image)

* These contents are based on the result that evaluated the arbitrary sample. The characteristic is not guaranteed. The design and reliability that fully considered flow mounting are checked but the influence by temperature profile etc. is also considered. Please consult with sales representatives for a recommendation temperature profile.
ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MAXIMUM RATINGS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cathode Voltage</td>
<td>(V_{KA})</td>
<td>14</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Cathode Current</td>
<td>(I_{K})</td>
<td>-30 ~ 50</td>
<td>mA</td>
</tr>
<tr>
<td>Reference Input Current</td>
<td>(I_{REF})</td>
<td>-10 ~ 0.05</td>
<td>mA</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>(P_D)</td>
<td>(MTP5) 200</td>
<td>mW</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>(T_{OPR})</td>
<td>-40 ~ +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>(T_{STG})</td>
<td>-40 ~ +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

RECOMMENDED OPERATING CONDITIONS (Ta=25°C)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cathode Voltage</td>
<td>(V_{KA})</td>
<td>-</td>
<td>13</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Cathode Current</td>
<td>(I_{K})</td>
<td>0.5</td>
<td></td>
<td>30</td>
<td>mA</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS (\(I_{K}=1\,mA, Ta=25°C\))

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITION</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Voltage</td>
<td>(V_{REF})</td>
<td>(V_{KA}=V_{REF}) (*1)</td>
<td>1241</td>
<td>1250</td>
<td>1259</td>
<td>mV</td>
</tr>
<tr>
<td>Reference Voltage Change vs. Cathode Voltage Change</td>
<td>(\Delta V_{REF}/\Delta V_{KA})</td>
<td>(</td>
<td>V_{REF}</td>
<td>\leq V_{KA}\leq 5,V) (*2)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Reference Input Current</td>
<td>(I_{REF})</td>
<td>R1=10kΩ, R2=∞ (*2)</td>
<td>–</td>
<td>2.0</td>
<td>4.0</td>
<td>uA</td>
</tr>
<tr>
<td>Minimum Input Current</td>
<td>(I_{MIN})</td>
<td>(V_{KA}=V_{REF}, \Delta V_{REF}=1%) (*1)</td>
<td>–</td>
<td>80</td>
<td>500</td>
<td>uA</td>
</tr>
<tr>
<td>Cathode Current (Off Cond.)</td>
<td>(I_{OFF})</td>
<td>(V_{KA}=13,V, V_{REF}=0,V) (*3)</td>
<td>–</td>
<td>0.01</td>
<td>1.0</td>
<td>uA</td>
</tr>
<tr>
<td>Dynamic Impedance</td>
<td>(</td>
<td>Z_{KA}</td>
<td>)</td>
<td>(V_{KA}=V_{REF}, 0.5,mA\leq I_{K}\leq 30,mA) (*1)</td>
<td>–</td>
<td>0.12</td>
</tr>
</tbody>
</table>

TEMPERATURE CHARACTERISTICS (\(I_{K}=1\,mA, Ta=-40°C ~ 85°C\))

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITION</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Voltage Change</td>
<td>(\Delta V_{REF})</td>
<td>(V_{KA}=V_{REF}) (*1)</td>
<td>–</td>
<td>±10</td>
<td>–</td>
<td>mV</td>
</tr>
<tr>
<td>Reference Input Current Change</td>
<td>(\Delta I_{REF})</td>
<td>R1=10kΩ, R2=∞ (*2)</td>
<td>–</td>
<td>0.5</td>
<td>–</td>
<td>uA</td>
</tr>
</tbody>
</table>

\(|V_{REF}|\) Reference voltage includes error.

(*1): Test Circuit (Fig.1)

(*2): Test Circuit (Fig.2)

(*3): Test Circuit (Fig.3)

In case of NJM2822, all electrical characteristics are measured referencing to the anode terminal of PIN 5.
TEST CIRCUIT

Fig.1 \(V_{KA} = V_{REF} \) to test circuit

\[V_O = V_{KA} = V_{REF} \]

Fig.2 \(V_{KA} > V_{REF} \) to test circuit

\[V_O = V_{KA} = V_{REF} \left(1 + \frac{R_1}{R_2} \right) + I_{REF} \times R_1 \]

Fig.3 \(I_{OFF} \) to test circuit

Fig.4 Gain and Phase to test circuit

POWER DISSIPATION VS. AMBIENT TEMPERATURE

![Power Dissipation vs. Ambient Temperature Graph](image)
■ TYPICAL CHARACTERISTICS

Reference Voltage vs. Cathode Current
\((V_{KA}=V_{REF}, Ta=25^\circ C) \)

Reference Voltage Change vs. Cathode Voltage
\((I_K=1\text{mA}, R_1=\text{Variable}, R_2=10k\Omega, Ta=25^\circ C) \)

Dynamic Impedance
\((I_K=0.5-30\text{mA}, V_{KA}=V_{REF}, Ta=25^\circ C) \)

Voltage Gain · Phase vs. Frequency
\((\text{Fig.4 Test Circuit, Ta}=25^\circ C) \)
Note: Oscillation might occur while operating within the range of safety curve. So that, it is necessary to make ample margins by taking considerations of fluctuation of the device.
TYPICAL CHARACTERISTICS

Reference Voltage vs. Temperature
\((I_K=1\,mA, V_{KA}=V_{REF})\)

Reference Input Current vs. Temperature
\((I_K=1\,mA, R_1=10\,k\Omega, R_2=\infty)\)

Reference Voltage vs. Temperature
\((I_K=1\,mA, V_{KA}=V_{REF})\)

Reference Input Current vs. Temperature
\((I_K=1\,mA, R_1=10\,k\Omega, R_2=\infty)\)

Cathode Current (Off Cond.) vs. Temperature
\((V_{KA}=13\,V, V_{REF}=0\,V)\)

Output Noise Voltage vs. Temperature
\((I_K=1\,mA, V_{KA}=V_{REF})\)
[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.