4-Input / 1-Output Stereo Audio Selector

GENERAL DESCRIPTION
The NJM2755 is 4 Input / 1 Output Stereo Audio Selector. The NJM2755 consists of switches and buffer operational amplifiers. Based on the internal switch op-amp technology, the NJM2755 features lower output noise, lower distortion and higher channel separation than the general Multiplexers or Analogue Switches.
The NJM2755 contains compatibility with NJM2752(2in-1out SW), NJM2753(3in-1out SW).

APPLICATIONS
- LCD-TV/PDP-TV
- Car Stereo
- Any Audio System

FEATURES
- Operating Voltage 4.7 to 10V
- 4 Input / 1 Output Stereo Audio Selectors
- Low Output Noise -114dBV typ.
- Low Distortion 0.0009% typ.
- Bipolar Technology
- Package Outline SSOP16

BLOCK DIAGRAM
The NJM2755 contains compatibility with NJM2752 (2in-1out SW), NJM2753 (3in-1out SW).
Absolute Maximum Ratings (Ta=25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V⁺</td>
<td>12</td>
<td>V</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>Pₒ</td>
<td>SSOP16 490</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>630</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1) EIA/JEDEC STANDARD Test board (76.2x114.3x1.6mm, 2layer, FR-4) mounting</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) EIA/JEDEC STANDARD Test board (76.2x114.3x1.6mm, 4layer, FR-4) mounting</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>TₒPR</td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>TₛTR</td>
<td>-40 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Electrical Characteristics (Ta=25°C, V⁺=9V)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Voltage</td>
<td>V⁺</td>
<td></td>
<td>4.7</td>
<td>9.0</td>
<td>10</td>
<td>V</td>
</tr>
<tr>
<td>Supply Current</td>
<td>IₐC</td>
<td>No Signal</td>
<td>-</td>
<td>10</td>
<td>15</td>
<td>mA</td>
</tr>
<tr>
<td>Reference Voltage</td>
<td>VₛREF</td>
<td></td>
<td>-</td>
<td>4.5</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Voltage Gain</td>
<td>Gᵥ</td>
<td>Vin=1Vrms, f=1kHz</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>dB</td>
</tr>
<tr>
<td>Total Harmonic Distortion</td>
<td>THD+N</td>
<td>Vin=1Vrms, f=1kHz</td>
<td>-</td>
<td>0.0009</td>
<td>0.03</td>
<td>%</td>
</tr>
<tr>
<td>Output Noise Voltage</td>
<td>VₛNO</td>
<td>A-Weighted</td>
<td>-</td>
<td>-114</td>
<td>-100</td>
<td>dBV</td>
</tr>
<tr>
<td>Maximum Output Voltage</td>
<td>VₛOM</td>
<td>f=1kHz, THD=1%</td>
<td>6</td>
<td>(2.0)</td>
<td>8</td>
<td>(2.5)</td>
</tr>
<tr>
<td>Cross Talk</td>
<td>CT</td>
<td>Vin=1Vrms, f=1kHz, A-Weighted</td>
<td>85</td>
<td>100</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Channel Separation</td>
<td>CS</td>
<td>Vin=1Vrms, f=1kHz, A-Weighted</td>
<td>90</td>
<td>110</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Switch-ON Voltage Level</td>
<td>VₛCH</td>
<td></td>
<td>2.4</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Switch-OFF Voltage Level</td>
<td>VₛₐL</td>
<td></td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>RₛN</td>
<td></td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>kΩ</td>
</tr>
<tr>
<td>Output Impedance</td>
<td>RₛOUT</td>
<td></td>
<td>-</td>
<td>45</td>
<td>-</td>
<td>Ω</td>
</tr>
</tbody>
</table>

Switch Control Logic

<table>
<thead>
<tr>
<th>CNT2</th>
<th>CNT1</th>
<th>Input Selector Ach / Bch</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L</td>
<td>1</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>2</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>3</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>4</td>
</tr>
</tbody>
</table>
TERMINAL DESCRIPTION

<table>
<thead>
<tr>
<th>PIN No.</th>
<th>SYMBOL</th>
<th>FUNCTION</th>
<th>EQUIVALENT CIRCUIT</th>
<th>TERMINAL VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>IN1A</td>
<td>Ach Input Terminal1</td>
<td>![Circuit Diagram 1]</td>
<td>V+/2</td>
</tr>
<tr>
<td>4</td>
<td>IN2A</td>
<td>Ach Input Terminal2</td>
<td>![Circuit Diagram 2]</td>
<td>0V (GND)</td>
</tr>
<tr>
<td>6</td>
<td>IN3A</td>
<td>Ach Input Terminal3</td>
<td>![Circuit Diagram 3]</td>
<td>V+/2</td>
</tr>
<tr>
<td>8</td>
<td>IN4A</td>
<td>Ach Input Terminal4</td>
<td>![Circuit Diagram 4]</td>
<td>V+/2</td>
</tr>
<tr>
<td>9</td>
<td>IN4B</td>
<td>Bch Input Terminal4</td>
<td>![Circuit Diagram 5]</td>
<td>V+/2</td>
</tr>
<tr>
<td>11</td>
<td>IN3B</td>
<td>Bch Input Terminal3</td>
<td>![Circuit Diagram 6]</td>
<td>V+/2</td>
</tr>
<tr>
<td>13</td>
<td>IN2B</td>
<td>Bch Input Terminal2</td>
<td>![Circuit Diagram 7]</td>
<td>V+/2</td>
</tr>
<tr>
<td>15</td>
<td>IN1B</td>
<td>Bch Input Terminal1</td>
<td>![Circuit Diagram 8]</td>
<td>V+/2</td>
</tr>
<tr>
<td>5</td>
<td>CNT1</td>
<td>Control Switch Terminal1</td>
<td>![Circuit Diagram 9]</td>
<td>V+/2</td>
</tr>
<tr>
<td>7</td>
<td>CNT2</td>
<td>Control Switch Terminal2</td>
<td>![Circuit Diagram 10]</td>
<td>V+/2</td>
</tr>
<tr>
<td>1</td>
<td>OUTA</td>
<td>Ach Output Terminal</td>
<td>![Circuit Diagram 11]</td>
<td>V+/2</td>
</tr>
<tr>
<td>16</td>
<td>OUTB</td>
<td>Bch Output Terminal</td>
<td>![Circuit Diagram 12]</td>
<td>V+/2</td>
</tr>
<tr>
<td>12</td>
<td>Vref</td>
<td>Reference Terminal</td>
<td>![Circuit Diagram 13]</td>
<td>V+/2</td>
</tr>
<tr>
<td>3</td>
<td>V+</td>
<td>Power Supply Terminal</td>
<td>![Circuit Diagram 14]</td>
<td>V+</td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
<td>GND Terminal</td>
<td>![Circuit Diagram 15]</td>
<td>0V</td>
</tr>
</tbody>
</table>
MEASUREMENT CIRCUIT
Application note:
Resistor (100kΩ) and capacitor (1µF) connected to CNT1 are added to reduce pop-noise.
The value of input capacitor connected to IN1A and IN2A depends on cut-off frequency (calculated by $f_c=1/2\pi RC$) you need. R(input impedance)=$100k\Omega$.
TYPICAL CHARACTERISTICS

ICC vs Supply Voltage
No signal

VREF vs Supply Voltage
No signal

GAIN vs Frequency V=9V, I/O: INA1-A out

THD+N vs Input Voltage
BW: 400-30kHz, f=1kHz, I/O: INA1-A out

Maximum Output Voltage vs Frequency
V=9V, THD=1%, I/O: INA1-A out
Typical Characteristics

Maximum Output Voltage vs Supply Voltage

THD=1%, I/O: INA1-Aout

- **Supply Voltage [±V]**
 - 0
 - 0.5
 - 1
 - 1.5
 - 2
 - 2.5
 - 3
 - 3.5
 - 4

- **Maximum Output Voltage [Vrms]**
 - 0
 - 0.5
 - 1
 - 1.5
 - 2
 - 2.5
 - 3
 - 3.5
 - 4

Maximum Output Voltage vs Load Resistance

V=9V, THD=1%, f=1kHz, I/O: INA1-Aout / INB1-Bout

- **RL [Ω]**
 - 1
 - 10
 - 100
 - 1000
 - 10000
 - 100000

- **Maximum Output Voltage [Vrms]**
 - 0
 - 0.5
 - 1
 - 1.5
 - 2
 - 2.5
 - 3
 - 3.5
 - 4

Cross Talk vs Frequency

V=9V, Vin=1Vrms, BW:10-80kHz, I/O: INA2-INA4/Aout, Select Channel:1ch

- **Frequency [Hz]**
 - 10
 - 100
 - 1000
 - 10000
 - 100000

- **Cross Talk [dB]**
 - -110
 - -100
 - -90
 - -80
 - -70
 - -60
 - -50
 - -40

- **Rg=0Ω**
- **Rg=620Ω**
- **Rg=3.3kΩ**
- **Rg=5.1kΩ**

Channel Separation vs Frequency

V=9V, Vin=1Vrms, BW:10-80kHz, I/O: INB1-Aout

- **Frequency [Hz]**
 - 10
 - 100
 - 1000
 - 10000
 - 100000

- **Channel Separation [dB]**
 - -110
 - -100
 - -90
 - -80
 - -70
 - -60
 - -50
 - -40

- **-40 to 105°C**
[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.