Two-phase Unipolar DC Brushless Motor Pre-Driver IC

GENERAL DESCRIPTION

The NJM2646 is a 2-phase DC brushless motor pre-driver IC with a totem-pole pre-driver for external power MOS-FET driving. It has useful functions of Lock Detect and Auto Protection circuit, which improve safety in motor locking. The turn-on/turn-off ratio in the auto-recovery period is set in 1:10. The NJM2644 is available in surface mount packages, an 8-lead DMP, SOP and thin type MSOP (TVSP), which provides downsizing in the 12V fan motor applications. And it is pin compatible with the NJM2640, 48V pre-driver.

FEATURES

- Operating Voltage $V_{DD}=4$ to 15V
- Absolute Maximum Voltage 30V
- Internal Lock Detect / Auto Protection Release Circuit
- Internal Hall Amp with Hysteresis
- Lock Alarm Output Terminal
- Package Outline DMP8, SOP8 JEDEC 150mil
 MSOP8(TVSP8)*

*MEET JEDEC MO-187-DA/THIN TYPE

BLOCK DIAGRAM

PIN FUNCTION

1: Vcc
2: H1
3: LA
4: H2
5: GND
6: Ct
7: OUT1
8: OUT2
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>RATINGS</th>
<th>UNIT</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V_{cc}</td>
<td>30</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>Hall Input Voltage Range</td>
<td>V_{IH}</td>
<td>-0.3 to V_{cc}</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>Output Current (Peak)</td>
<td>I_{OUT}</td>
<td>70</td>
<td>mA</td>
<td>-</td>
</tr>
<tr>
<td>Lock Alarm Output Voltage</td>
<td>V_{OLA}</td>
<td>30</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>Hall Input Differential Voltage</td>
<td>V_{IHD}</td>
<td>2</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>Lock Alarm Output Current</td>
<td>I_{OLA}</td>
<td>20</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>T_{opr}</td>
<td>-40 to 85</td>
<td>°C</td>
<td>-</td>
</tr>
<tr>
<td>Operating Junction Temperature Range</td>
<td>T_{oj}</td>
<td>-40 to 150</td>
<td>°C</td>
<td>-</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_{stg}</td>
<td>-50 to 150</td>
<td>°C</td>
<td>-</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_{D}</td>
<td>300 (DMP8)</td>
<td>mW</td>
<td>Device itself</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300 (SOP8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>400 (MSOP8(TVSP8))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>RATINGS</th>
<th>UNIT (unit)</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V_{cc}</td>
<td>4 to 15</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>Hall Input Voltage Common Mode Voltage</td>
<td>V_{ICM}</td>
<td>1.5 to Vcc-2</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T_{j}</td>
<td>-40 to 125</td>
<td>°C</td>
<td>-</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS

$\text{(V}_{DD}\text{=}12\text{V, }Ta=25^\circ\text{C)}$

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITION</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Current</td>
<td>I_{cc}</td>
<td>-</td>
<td></td>
<td>7.7</td>
<td>10.5</td>
<td>mA</td>
</tr>
<tr>
<td>Hall Input Hysteresis Range</td>
<td>V_{HYS}</td>
<td>-</td>
<td>8</td>
<td>20</td>
<td>-</td>
<td>mV</td>
</tr>
<tr>
<td>Hall Amplifier Input Bias Current</td>
<td>I_{B}</td>
<td>-</td>
<td></td>
<td>0.5</td>
<td>-</td>
<td>μA</td>
</tr>
<tr>
<td>High Side Output Voltage</td>
<td>V_{OH}</td>
<td>$I_{OUT}=20mA$</td>
<td>10.0</td>
<td>10.3</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Low Side Output Voltage</td>
<td>V_{OL}</td>
<td>$I_{OUT}=20mA$</td>
<td>-</td>
<td>0.5</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>Output Clamp Voltage</td>
<td>V_{GLM}</td>
<td>$V_{CC}=28V$</td>
<td></td>
<td>15</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Lock Alarm Output Voltage</td>
<td>V_{LA}</td>
<td>Lock Alarm ON,$I_{LA}=5mA$</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td>Lock Alarm Leak Current</td>
<td>$I_{LA-LEAK}$</td>
<td>$V_{LA}=15V$</td>
<td></td>
<td>1</td>
<td>3</td>
<td>μA</td>
</tr>
<tr>
<td>Ct Charge Current</td>
<td>I_{C}</td>
<td>$V_{Ct}=1.5V$</td>
<td>-</td>
<td>4.0</td>
<td>5.5</td>
<td>μA</td>
</tr>
<tr>
<td>Ct Discharge Current</td>
<td>I_{DC}</td>
<td>$V_{Ct}=1.5V$</td>
<td>-</td>
<td>0.4</td>
<td>0.6</td>
<td>μA</td>
</tr>
<tr>
<td>Charge / Discharge Current Ratio</td>
<td>I_{C} / I_{DC}</td>
<td>-</td>
<td></td>
<td>12</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Ct H-level Cense Voltage</td>
<td>V_{CH}</td>
<td></td>
<td>2.2</td>
<td>2.5</td>
<td>2.8</td>
<td>V</td>
</tr>
<tr>
<td>Ct L-level Cense Voltage</td>
<td>V_{CL}</td>
<td></td>
<td></td>
<td>0.85</td>
<td>0.95</td>
<td>1.05</td>
</tr>
<tr>
<td>Auto Protection Release ON Time</td>
<td>T_{ON}</td>
<td>Ct=0.47μF</td>
<td>-</td>
<td>0.23</td>
<td>-</td>
<td>s</td>
</tr>
<tr>
<td>Auto Protection Release ON Time</td>
<td>T_{OFF}</td>
<td>Ct=0.47μF</td>
<td>-</td>
<td>2.8</td>
<td>-</td>
<td>s</td>
</tr>
</tbody>
</table>
NJM2646

TYPICAL CHARACTERISTICS

VCC vs ICC

VCC vs VCLM

IOUT vs VOH

VCC vs VCLM

IOUT vs VOL

Ta vs Toff/Ton

VLA

APPLICATION NOTE
The NJM2646 is a two-phase motor unipolar pre-driver IC for FET drive. It is suitable for fan motor drivers for communication equipment where 12V operation is required.

[Application Circuit Example]

[Design Notes]

Above application example is designed for 12V operation. It uses the following components:

Hall Elements: HW101A (AKE)
TR1,TR2: 2SK3022 (Panasonic)

1. Selection of C1 and D1:
 C1 is used for a noise reduction purpose. A typical value is 0.1uF.
 Optimize the value in actual operating conditions if necessary. D1 is a diode for protection against reverse voltage supply. Silicon rectifier diode (WO3C, 10D1 and equivalent) is appropriate.

2. Lock Protection Function (Design of C2 value):
 Lock Protection Function, consists of Motor Lock Detection and Auto Resume Function, is a safety feature to protect a motor and a driver circuit from fatal destruction in case of motor halt.
 Motor Lock Detection detects motor halt due to irregular load conditions and then cuts motor driving current for safety operation. When Lock Detection is activated; Lock Alert Out (LA: Pin 3) goes to L.
 A value of C2 determines Lock detection time (Ton) and Auto Resume Time (Toff).

 Lock detection time (Ton) is given by:
 \[T_{on} = C_2 \frac{V_{ch} - V_{cl}}{I_c} \text{[sec]} \]
 Where C2 is 0.47uF:
 \[T_{on} = 0.47 \times 10^{-6} \times \frac{2.5 - 0.95}{4.0 \times 10^{-6}} = 0.18 \text{[sec]} \]

 Auto Resume Time (Toff) is given by:
Where C_2 is $0.47\mu F$:

$$T_{OFF} = C_2 \frac{V_{ch} - V_{cl}}{I_{dc}} \text{[sec]}$$

In actual application, Lock detection time (T_{on}) is affected by the mechanical time constant of a motor. Therefore, constant start up must be confirmed in actual evaluation taking operating variations (i.e. Temperature, Voltage change and so on) in consideration.

A typical value of C_2 is either $0.47\mu F$ or $1\mu F$ depending on a motor.

Lock Protection

Lock Alert Out (LA: Pin 3) is a open collector output and R_3 is a pull up resister. A typical value of R_3 is $10k\Omega$.

It must be noted that Lock Alert Out stays a H state during few hundred milliseconds from power up as shown in the picture below.
3. Design of hall element bias resistance (R1 and R2)
Hall amplifier is a differential amplifier with hysteresis characteristics (24mV typical).
The common-mode input voltage is between 1.5V and Vcc-2V and the input signal must be within the range.
Non-excitation hall bias voltage is to be set at a half of VCC for effective use of common-mode input voltage range.
Therefore the same value of hall bias resistors is selected for R1 and R2.
Given that the bias current is set to be 5mA by HW101A datasheet, R1 and R2 can be determined as follows:

\[
R1 + R2 = \frac{Vcc}{I_{bias}} = \frac{12}{5 \times 10^{-3}} = 2.4k\Omega
\]

\[
R1 = R2 = 1.2k\Omega
\]

The output voltage of hall elements is influenced by the bias current and magnetic flux density of hall elements.
The optimum input voltage of the NJM2646 is 100mVp-p and higher. With such input voltage, the highest efficiency can be obtained.

4. Design of spike killer for power transistor (ZD1 and ZD2)
Zenner diodes (often referred as spike killer) are used for limiting kick back voltage of motor winding generated when power transistors is (TR1 and TR2) turned off from on.
There are two methodologies to consume kick back voltage:

1) **By insertion of ZD1** (zenner diode connected between Base and Emitter of TR1)
 Energy of kick back voltage is consumed by TR1(or TR2). When ZD1 is in operation, Collector voltage is sum of Vbe and ZD1. Therefore, breakdown voltage of ZD1 must be lower than that of TR1.

2) **By insertion of ZD2** (zenner diode connected between Collector and Emitter of TR1)
 Energy of kick back voltage is consumed by ZD2. To protect TR1, breakdown voltage of ZD2 must be lower than that of TR1.
 This method is generally used when Energy of kick back voltage is large. In such application, power rating of ZD must take in consideration.

5. VCC input (Design of Ra and Ca)
Ra and Ca must be used if VCC exceeds operating voltage range of NJM2646.

Example) VCC 30V Application

Given that current consumption of NJM2646 is 10.5mA (at VCC=12V), Ra is given by:

\[
Ra = \frac{30 - 12}{10.5 \times 10^{-3}} = 1.71k\Omega
\]

Ca is used if NJM2646 is oscillated or shows unstable operation. A typical value Ca is from 0.01µF to 0.1µF.
A ceramic type is recommended and it must be place near VCC and Gnd.

Inserting Ra and Ca also improves ESD immunity.

7. Protection from active power on and off (D2)
If an application requires active power on and off, TR1 (TR2) may be damaged or resulted in destruction.
In such application, adding diode between motor winding and Gnd will reduce the damage.
The specifications on this data book are only given for information, without any guarantee as regards either mistakes or omissions. The application circuit in this data book are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.