PWM DC/DC CONVERTER IC

GENERAL DESCRIPTION

The NJM2374A is a PWM DC/DC converter IC. It features fixed frequency type PWM control for better noise handling and to avoid intermittent oscillation observed in a simplified controller.

It is suitable for Step-Up, Step-Down and Inverting applications for EMI sensitive application.

FEATURES

- Operating Voltage (2.5V* to 40V)
- NJM2374AE Operating Voltage (2.5V* to 48V)
- Wide Oscillator Frequency (100Hz to 100kHz)
- Internal High Power Transistor 1.5A (max.)
- Internal Over Current Limit Circuit
- PWM form Switching Power Supply Control
- Bipolar Technology
- Package Outline DIP8, DMP8, SOP8 JEDEC 150mil SSOP14

*Ta =25°C. At low temperature, the minimum voltage is 3.0V.

PIN CONFIGURATION

NJM2374AD
NJM2374AM
NJM2374AE

NJM2374AV

PIN FUNCTION

1. CS
2. NC
3. NC
4. NC
5. IN
6. V
7. SI
8. CD
9. NC
10. V
11. NC
12. SI
13. NC
14. CD

NJM2374AD
NJM2374AM
NJM2374AE

NJM2374AV

PIN FUNCTION

1. CS
2. NC
3. NC
4. NC
5. CT
6. GND
7. SI
8. CD
9. NC
10. V
11. NC
12. SI
13. NC
14. CD
■ BLOCK DIAGRAM

(DIP8, DMP8, SOP8: PACKAGE)

(SSOP14: PACKAGE)
ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>RATINGS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Supply Voltage</td>
<td>V+</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(NJM2374AE: 48V)</td>
<td></td>
</tr>
<tr>
<td>Output Switch Current</td>
<td>I_{SW}</td>
<td>1.5</td>
<td>A</td>
</tr>
<tr>
<td>Output Switch Voltage</td>
<td>V_{SW}</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(NJM2374AE: 48V)</td>
<td></td>
</tr>
<tr>
<td>Comparator Input Voltage</td>
<td>V_{IR}</td>
<td>-0.3 ~ 40</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(NJM2374AE: 48V)</td>
<td></td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_D</td>
<td>DIP8: 875</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DMP8: 750</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOP8: 1,000</td>
<td>(note1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SSOP14: 375</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>Topr</td>
<td>-40 ~ +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>Tstg</td>
<td>-50 ~ +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(note1) At on PC board.

In the case of Step-Down and Inverting Conversion with the internal power transistor, the Output Voltage must be set lower than 6V(-6V).

POWER DISSIPATION vs. AMBIENT TEMPERATURE

In the case of SSOP packaging, the power dissipation should carefully be considered when designing this parts.
ELECTRICAL CHARACTERISTICS

DC Characteristics \((V^+=5V, \, Ta=25^\circ C) \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Current 1</td>
<td>(I_{CC1})</td>
<td>(C_T=1nF, , S_P=V^+, , IN^+> V_{th}, , E_S=GND)</td>
<td>–</td>
<td>2.8</td>
<td>4.0</td>
<td>mA</td>
</tr>
<tr>
<td>Operating Current 2</td>
<td>(I_{CC2})</td>
<td>(V^+=48V, C_T=1nF, S_P=V^+, , IN^+> V_{th}, , E_S=GND)</td>
<td>–</td>
<td>3.4</td>
<td>4.5</td>
<td>mA</td>
</tr>
<tr>
<td>(NJM2374AE Only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charge Current</td>
<td>(I_{ch})</td>
<td></td>
<td>12</td>
<td>20</td>
<td>30</td>
<td>(\mu)A</td>
</tr>
<tr>
<td>Discharge Current</td>
<td>(I_{ds})</td>
<td></td>
<td>110</td>
<td>180</td>
<td>300</td>
<td>(\mu)A</td>
</tr>
<tr>
<td>Voltage Swing</td>
<td>(V_{OSC})</td>
<td></td>
<td>–</td>
<td>0.5</td>
<td>–</td>
<td>(V_{P-P})</td>
</tr>
<tr>
<td>Discharge to Charge Current Ratio</td>
<td>(I_{ratio})</td>
<td>(S_I=V^+)</td>
<td>–</td>
<td>9</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Peak Current Sense Voltage</td>
<td>(V_{pk})</td>
<td>(I_{ch}=I_{ds})</td>
<td>250</td>
<td>300</td>
<td>350</td>
<td>mV</td>
</tr>
<tr>
<td>Saturation Voltage 1</td>
<td>(V_{sat1})</td>
<td>Darlington Connection ((C_S=C_D), , I_{SW}=0.7A)</td>
<td>–</td>
<td>1.0</td>
<td>1.3</td>
<td>V</td>
</tr>
<tr>
<td>Saturation Voltage 2</td>
<td>(V_{sat2})</td>
<td>(I_{SW}=0.7A, I_{c(driver)}=50mA) ((Forced \beta=14))</td>
<td>–</td>
<td>0.5</td>
<td>0.7</td>
<td>V</td>
</tr>
<tr>
<td>Output Transistor Bias Resistance</td>
<td>(R_{bias})</td>
<td></td>
<td>–</td>
<td>160</td>
<td>–</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>DC Voltage Gain</td>
<td>(h_{FE})</td>
<td>(I_{SW}=0.7A, , V_{CE}=5.0V)</td>
<td>35</td>
<td>120</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Collector Off-State Current</td>
<td>(I_{C(Off)})</td>
<td>(V_{CE}=40V) ((NJM2374AE: , V_{CE}=48V))</td>
<td>–</td>
<td>10</td>
<td>–</td>
<td>nA</td>
</tr>
<tr>
<td>Threshold Voltage</td>
<td>(V_{th})</td>
<td></td>
<td>1.225</td>
<td>1.250</td>
<td>1.275</td>
<td>V</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>(I_{IB})</td>
<td>(IN^+=0V)</td>
<td>–</td>
<td>40</td>
<td>400</td>
<td>nA</td>
</tr>
</tbody>
</table>

(note) Output switch tests are performed under pulsed conditions to minimize power dissipation.

TIMING CHART

![Timing Chart](chart.png)

- High Voltage Detect
- Current-Limit Active Point
- Reference Voltage
- Output Voltage
- Oscillator Waveform
- OSC Block to FF Reset
- Collector-Emitter Voltage

New Japan Radio Co., Ltd.

Ver.2011-12-08
TYPICAL CHARACTERISTICS

Oscillator Frequency vs. Timing Capacitor
\((V^+=5V, S_i=V^+, \text{Pin5}=\text{GND}, T_a=25^\circ\text{C}) \)

Switch ON/OFF Time vs. Timing Capacitor
\((V^+=5V, S_i=V^+, \text{Pin5}=\text{GND}, T_a=25^\circ\text{C}) \)

Saturation Voltage 1 vs. Collector Current
\((V^+=5V, C_s=C_D, T_a=25^\circ\text{C}) \)

Saturation Voltage 2 vs. Collector Current
\((V^+=5V, I_{\text{c(driver)}}=50mA, \beta \approx 34, T_a=25^\circ\text{C}) \)

Operating Current vs. Operating Voltage
\((C_t=1nF, S_i=V^+, I_{N+}>V_{th}, E_s=\text{GND}, T_a=25^\circ\text{C}) \)
TYPICAL CHARACTERISTICS

Threshold Voltage vs. Temperature
(V+=5V)

Saturation Voltage 1 vs. Temperature
(V+=5V, C_S=C_D, I_SW=0.7A)

Saturation Voltage 2 vs. Temperature
(V+=5V, I_SW=0.7A, I_c(driver)=50mA, β=14)

Discharge to Charge Current Ratio vs. Temperature
(V+=5V, S_I=V+)

Operating Current vs. Temperature
(V+=5V, C_T=1nF, S_I=V+, I_N> Vth, E_S=GND)
TYPICAL APPLICATIONS

Step-Down Converter

In the case of Step-Down Conversion with the internal power transistor, the Output Voltage must be set lower than 6V.

Step-Up Converter

Inverting Converter

In the case of Inverting Conversion with the internal power transistor, the Output Voltage must be set lower than -6V.

D1 use to schottky diode.

In the case of SSOP packaging, the power dissipation should be carefully considered when designing this parts.
NJM2374A

Step-Down Converter (High Current)

D1 use to schottky diode.

Step-Up Converter (High Current)

[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.