5 GHz Low Noise Amplifier with Bypass function

FEATURES
- Operating frequency $f = 4900$ to 5925 MHz
- Operating voltage 2.5 to 5.5 V
 - [LNA active mode]
 - High gain 16 dB typ.
 - Low noise figure 0.95 dB typ.
 - High IIP3 +9 dBm typ.
- Small package size 1.6 x 1.6 x 0.397 mm3 typ.
- RoHS compliant and Halogen Free, MSL1

APPLICATION
- LTE advanced in unlicensed spectrum (LTE-U/LAA)
- WLAN (IEEE 802.11 a/n/ac/ax)
- Small cell, CPE
- Access points, routers, gateways
- Wireless routers
- 5 GHz ISM radios

GENERAL DESCRIPTION
The NJG1175KG1 is a low noise amplifier for wireless receiver applications in the 4900 MHz to 5925 MHz. This LNA has a LNA pass-through function to select LNA active mode or bypass mode.
The NJG1175KG1 achieves High linearity, Low distortion, high gain, and low noise figure.
Integrated ESD protection device on each port achieves excellent ESD robustness.
The small and thin ESON6-G1 package is adopted.

TRUTH TABLE

<table>
<thead>
<tr>
<th>V_{CTL}</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Bypass mode</td>
</tr>
<tr>
<td>H</td>
<td>LNA Active mode</td>
</tr>
</tbody>
</table>

PIN CONFIGURATION

<table>
<thead>
<tr>
<th>PIN NO.</th>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCTL</td>
<td>Control signal input terminal</td>
</tr>
<tr>
<td>2</td>
<td>RFIN</td>
<td>RF input terminal</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground terminal</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground terminal</td>
</tr>
<tr>
<td>5</td>
<td>RFOUT</td>
<td>RF output terminal</td>
</tr>
<tr>
<td>6</td>
<td>VDD</td>
<td>Operating voltage supply terminal</td>
</tr>
</tbody>
</table>

Exposed pad: GND: Ground terminal
NJG1175KG1

■ PRODUCT NAME INFORMATION

NJG1175 KG1 (TE3)

Part Number Package Taping Form

■ ORDERING INFORMATION

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE OUTLINE</th>
<th>RoHS</th>
<th>HALOGEN-FREE</th>
<th>TERMINAL FINISH</th>
<th>MARKING</th>
<th>WEIGHT (mg)</th>
<th>MOQ (pcs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJG1175KG1</td>
<td>ESON6-G1</td>
<td>Yes</td>
<td>Yes</td>
<td>Sn-Bi</td>
<td>1175</td>
<td>3.5</td>
<td>3,000</td>
</tr>
</tbody>
</table>

■ ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>RATINGS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Input Power(1)</td>
<td>P_{IN}</td>
<td>+15</td>
<td>dBm</td>
</tr>
<tr>
<td>Supply Voltage(2)</td>
<td>V_{DD}</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>Control Voltage(3)</td>
<td>V_{CTL}</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>Power Dissipation(4)</td>
<td>P_{D}</td>
<td>1200</td>
<td>mW</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_{opr}</td>
<td>-40 to +105</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{stag}</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1): V_{DD} = 3.3 V
(2): VDD port
(3): VCTL port
(4): Mounted on four-layer FR4 PCB with through-hole (101.5 × 114.3 mm), T_{j} = 150°C

■ POWER DISSIPATION VS. AMBIENT TEMPERATURE

Please, refer to the following Power Dissipation and Ambient Temperature.

(Please note the surface mount package has a small maximum rating of Power Dissipation [P_{D}], a special attention should be paid in designing of thermal radiation.)

Power Dissipation - Ambient Temperature Characteristic

Mounted on PCB

![Power Dissipation Graph](image)
RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V_{DD}</td>
<td>2.5</td>
<td>3.3</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Control Voltage (HIGH)</td>
<td>$V_{\text{CTL(H)}}$</td>
<td>1.3</td>
<td>3.3</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Control Voltage (LOW)</td>
<td>$V_{\text{CTL(L)}}$</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>V</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS 1 (DC CHARACTERISTICS)

$T_a = 25^\circ\text{C}$, $Z_s = Z_l = 50$ Ω, with application circuit

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITION</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Current 1</td>
<td>I_{DD1}</td>
<td>RF OFF, $V_{DD} = 3.3$ V, $V_{\text{CTL}} = 3.3$ V</td>
<td>-</td>
<td>13</td>
<td>18</td>
<td>mA</td>
</tr>
<tr>
<td>Operating Current 2</td>
<td>I_{DD2}</td>
<td>RF OFF, $V_{DD} = 3.3$ V, $V_{\text{CTL}} = 0$ V</td>
<td>-</td>
<td>20</td>
<td>100</td>
<td>μA</td>
</tr>
<tr>
<td>Control Current</td>
<td>I_{CTL}</td>
<td>RF OFF, $V_{\text{CTL}} = 3.3$ V</td>
<td>-</td>
<td>25</td>
<td>50</td>
<td>μA</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS 2 (RF CHARACTERISTICS: LNA active mode)

$f_{RF} = 4900$ to 5925 MHz, $V_{DD} = 3.3$ V, $V_{\text{CTL}} = 3.3$ V, $T_a = 25^\circ\text{C}$, $Z_s = Z_l = 50$ Ω, with application circuit

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITION</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small signal gain</td>
<td>Gain</td>
<td>Exclude PCB and connector losses 1</td>
<td>12</td>
<td>16</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Noise figure</td>
<td>NF</td>
<td>Exclude PCB and connector losses 2</td>
<td>-</td>
<td>0.95</td>
<td>1.6</td>
<td>dB</td>
</tr>
<tr>
<td>Input power at 1 dB gain</td>
<td>$P_{1\text{dB(IN)}}$</td>
<td>$f_1 = f_{RF}, f_2 = f_{RF} + 1$ MHz, $P_{IN} = -30$ dBm</td>
<td>-14</td>
<td>-5</td>
<td>-</td>
<td>dBm</td>
</tr>
<tr>
<td>Input 3rd order intercept</td>
<td>$I_{\text{IP3_1}}$</td>
<td>$f_1 = f_{RF}, f_2 = f_{RF} + 1$ MHz, $P_{IN} = -30$ dBm</td>
<td>-3</td>
<td>+9</td>
<td>-</td>
<td>dBm</td>
</tr>
<tr>
<td>RF IN return loss</td>
<td>R_{Li1}</td>
<td>-</td>
<td>6</td>
<td>13</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>RF OUT return loss</td>
<td>R_{Lo1}</td>
<td>-</td>
<td>6</td>
<td>18</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Gain settling time 1</td>
<td>T_{S1}</td>
<td>Bypass to LNA active mode, To be within 1 dB of the final gain</td>
<td>-</td>
<td>0.5</td>
<td>2</td>
<td>μs</td>
</tr>
<tr>
<td>Gain settling time 2</td>
<td>T_{S2}</td>
<td>LNA active to bypass mode, To be within 1 dB of the final insertion loss</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>μs</td>
</tr>
</tbody>
</table>

1: PCB and connector losses: 0.60 dB @ 4900 MHz, 0.64 dB @ 5500 MHz, 0.69 dB @ 5925 MHz
2: PCB and connector losses: 0.27 dB @ 4900 MHz, 0.30 dB @ 5500 MHz, 0.31 dB @ 5925 MHz

ELECTRICAL CHARACTERISTICS 3 (RF CHARACTERISTICS: Bypass mode)

$f_{RF} = 4900$ to 5925 MHz, $V_{DD} = 3.3$ V, $V_{\text{CTL}} = 0$ V, $T_a = 25^\circ\text{C}$, $Z_s = Z_l = 50$ Ω, with application circuit

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITION</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion loss</td>
<td>Loss</td>
<td>Exclude PCB and connector losses 1</td>
<td>-</td>
<td>5.5</td>
<td>9</td>
<td>dB</td>
</tr>
<tr>
<td>Input power at 1 dB gain</td>
<td>$P_{1\text{dB(IN)}}$</td>
<td>$f_1 = f_{RF}, f_2 = f_{RF} + 1$ MHz, $P_{IN} = -15$ dBm</td>
<td>0</td>
<td>+9</td>
<td>-</td>
<td>dBm</td>
</tr>
<tr>
<td>Input 3rd order intercept</td>
<td>$I_{\text{IP3_2}}$</td>
<td>$f_1 = f_{RF}, f_2 = f_{RF} + 1$ MHz, $P_{IN} = -15$ dBm</td>
<td>0</td>
<td>+14</td>
<td>-</td>
<td>dBm</td>
</tr>
<tr>
<td>RF IN return loss</td>
<td>R_{Li2}</td>
<td>-</td>
<td>4</td>
<td>10</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>RF OUT return loss</td>
<td>R_{Lo2}</td>
<td>-</td>
<td>4</td>
<td>11</td>
<td>-</td>
<td>dB</td>
</tr>
</tbody>
</table>

1: PCB and connector losses: 0.60 dB @ 4900 MHz, 0.64 dB @ 5500 MHz, 0.69 dB @ 5925 MHz
- ELECTRICAL CHARACTERISTICS (LNA active mode)

\[V_{DD} = 3.3 \, \text{V}, \, V_{CTL} = 3.3 \, \text{V}, \, T_a = 25^\circ \text{C}, \, Z_s = Z_i = 50 \, \Omega, \, \text{with application circuit} \]
ELECTRICAL CHARACTERISTICS (LNA active mode)

$V_{DD} = 3.3\,\text{V}$, $V_{CTL} = 3.3\,\text{V}$, $T_a = 25\,\text{°C}$, $Z_s = Z_l = 50\,\Omega$, with application circuit.

S11 vs frequency

$(V_{DD}=3.3\,\text{V}, V_{CTL}=3.3\,\text{V})$

S22 vs frequency

$(V_{DD}=3.3\,\text{V}, V_{CTL}=3.3\,\text{V})$

S21 vs frequency

$(V_{DD}=3.3\,\text{V}, V_{CTL}=3.3\,\text{V})$

S12 vs frequency

$(V_{DD}=3.3\,\text{V}, V_{CTL}=3.3\,\text{V})$

(Exclude PCB, connector losses).

Zin

Freq (50.00MHz to 10.00GHz)

- m1: freq=4.900GHz
 - $S(1,1)=0.251 / 65.532$
 - Impedance = 20 * (1.006 + j0.533)

- m2: freq=5.925GHz
 - $S(1,1)=0.351 / -111.177$
 - Impedance = 20 * (0.637 - j0.478)

Zout

Freq (50.00MHz to 10.00GHz)

- m3: freq=4.900GHz
 - $S(2,2)=0.298 / 38.736$
 - Impedance = 20 * (1.460 + j0.507)

- m4: freq=5.925GHz
 - $S(2,2)=0.051 / -125.265$
 - Impedance = 20 * (0.040 - j0.078)
- ELECTRICAL CHARACTERISTICS (Bypass mode)
 $V_{DD} = 3.3\, \text{V}$, $V_{CTL} = 0\, \text{V}$, $T_a = 25^\circ\text{C}$, $Z_s = Z_l = 50\, \Omega$, with application circuit
ELECTRICAL CHARACTERISTICS (Bypass mode)

$V_{DD} = 3.3\, \text{V}, V_{CTL} = 0\, \text{V}, T_a = 25^\circ\text{C}, Z_s = Z_l = 50\, \Omega$, with application circuit

S11 vs frequency

$V_{DD}=3.3\, \text{V}, V_{CTL}=0\, \text{V}$

S22 vs frequency

$V_{DD}=3.3\, \text{V}, V_{CTL}=0\, \text{V}$

S21 vs frequency

$V_{DD}=3.3\, \text{V}, V_{CTL}=0\, \text{V}$

(Exclude PCB, connector losses)

S12 vs frequency

$V_{DD}=3.3\, \text{V}, V_{CTL}=0\, \text{V}$

(Exclude PCB, connector losses)

Frequency diagrams with labeled impedances:

- **Zin**:
 - m_1: freq: 4.900GHz
 - S_{11}: $-0.596 / 138.320$
 - Impedance: $Z_0 \ast (0.311 \pm j0.348)$

- **Zout**:
 - m_3: freq: 4.900GHz
 - S_{21}: $0.477 / 94.048$
 - Impedance: $Z_0 \ast (0.597 \pm j0.735)$

New Japan Radio Co., Ltd.
http://www.njr.com/
- ELECTRICAL CHARACTERISTICS (LNA active mode)

\[V_{\text{ctl}} = 3.3 \, \text{V}, \; Z_s = Z_l = 50 \, \Omega, \text{ with application circuit} \]
ELECTRICAL CHARACTERISTICS (Bypass mode)

\[V_{\text{CTL}} = 0 \text{ V, } Z_s = Z_l = 50 \, \Omega, \text{ with application circuit} \]

- **Loss vs. Ambient Temperature**
 \[(V_{\text{CTL}}=0\text{V}, f=5025\text{MHz}) \]

- **P-1dB(IN) vs. Ambient Temperature**
 \[(V_{\text{CTL}}=0\text{V}, f=5025\text{MHz}) \]

- **IIP3 vs. Ambient Temperature**
 \[(V_{\text{CTL}}=0\text{V}, f_1=500\text{MHz}, f_2=5025\text{MHz}, P_{\text{IN}}=-15\text{dBm}) \]

ELECTRICAL CHARACTERISTICS (DC)

\[Z_s = Z_l = 50 \, \Omega, \text{ with application circuit} \]

- **\(I_{\text{OD}1} \) vs. \(V_{\text{DD}} \)**
 \[(V_{\text{CTL}}=3.3\text{V}) \]

- **\(I_{\text{OD}} \) vs. \(V_{\text{CTL}} \)**
 \[(V_{\text{DD}}=3.3\text{V}) \]
APPLICATION CIRCUIT

1 Pin Index
(Top view)

VCTL
1

RFIN
2

C1
3

GND
4

VDD
6

Logic, Bias Circuit

Exposed Pad

RFIN

RFOUT

L1 1.3 nH LQP03TN_02 Series (MURATA)

C1 1000 pF GRM03 Series (MURATA)

PARTS LIST

<table>
<thead>
<tr>
<th>Part ID</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>1.3 nH</td>
<td>LQP03TN_02 Series (MURATA)</td>
</tr>
<tr>
<td>C1</td>
<td>1000 pF</td>
<td>GRM03 Series (MURATA)</td>
</tr>
</tbody>
</table>
EVALUATION BOARD PCB LAYOUT

(Top view)

PCB Information
Substrate: FR-4
Thickness: 0.2mm
Microstrip line width: 0.4mm ($Z_0=50\Omega$)
Size: 14.0mm x 14.0mm

<PCB LAYOUT GUIDELINE>

PRECAUTIONS
• All external parts should be placed as close as possible to the IC.
• For good RF performance, all GND terminals (including the exposed pad) must be connected to PCB ground plane of substrate, and via-holes for GND should be placed near the IC.
RECOMMENDED FOOTPRINT PATTERN (ESON6-G1)

PKG: 1.6 mm x 1.6 mm
Pin pitch: 0.5 mm

- Land
- Mask (Open area) *Metal mask thickness : 100μm
- Resist (Open area)

Units: mm
Noise Figure Measurement Block Diagram

Measuring Instruments
- NF Analyzer: Keysight N8975A
- Noise Source: Keysight 346A

Setting the NF Analyzer
- Measurement mode form
 - Device under test: Amplifier
 - System downconverter: off
- Mode setup form
 - Sideband: LSB
 - Averages: 8
 - Average mode: Point
 - Bandwidth: 4MHz
 - Loss comp: off
 - Tcold: setting the temperature of noise source (305.15K)

Calibration Setup

* Preamplifier is used to improve NF measurement accuracy.
* Noise source, preamplifier and NF analyzer are connected directly.

Measurement Setup

* Noise source, DUT, preamplifier and NF analyzer are connected directly.
■ PACKAGE OUTLINE

Unit : mm
Substrate : Cu
Terminal Treat : SnBi
Molding Material : Epoxy Resin
Weight : 0.0035 (g)

Please connect to GND
[CAUTION]

1. NJR strives to produce reliable and high quality semiconductors. NJR's semiconductors are intended for specific applications and require proper maintenance and handling. To enhance the performance and service of NJR's semiconductors, the devices, machinery or equipment into which they are integrated should undergo preventative maintenance and inspection at regularly scheduled intervals. Failure to properly maintain equipment and machinery incorporating these products can result in catastrophic system failures.

2. The specifications on this datasheet are only given for information without any guarantee as regards either mistakes or omissions. The application circuits in this datasheet are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial property rights. All other trademarks mentioned herein are the property of their respective companies.

3. To ensure the highest levels of reliability, NJR products must always be properly handled. The introduction of external contaminants (e.g. dust, oil or cosmetics) can result in failures of semiconductor products.

4. NJR offers a variety of semiconductor products intended for particular applications. It is important that you select the proper component for your intended application. You may contact NJR's Sale's Office if you are uncertain about the products listed in this datasheet.

5. Special care is required in designing devices, machinery or equipment which demand high levels of reliability. This is particularly important when designing critical components or systems whose failure can foreseeably result in situations that could adversely affect health or safety. In designing such critical devices, equipment or machinery, careful consideration should be given to amongst other things, their safety design, fail-safe design, back-up and redundancy systems, and diffusion design.

6. The products listed in this datasheet may not be appropriate for use in certain equipment where reliability is critical or where the products may be subjected to extreme conditions. You should consult our sales office before using the products in any of the following types of equipment:
 - Aerospace Equipment
 - Equipment Used in the Deep Sea
 - Power Generator Control Equipment (Nuclear, steam, hydraulic, etc.)
 - Life Maintenance Medical Equipment
 - Fire Alarms / Intruder Detectors
 - Vehicle Control Equipment (Airplane, railroad, ship, etc.)
 - Various Safety Devices

7. NJR's products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. NJR shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products. The products are sold without warranty of any kind, either express or implied, including but not limited to any implied warranty of merchantability or fitness for a particular purpose.

8. Warning for handling Gallium and Arsenic (GaAs) Products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.

9. The product specifications and descriptions listed in this datasheet are subject to change at any time, without notice.