WIDE BAND LOW NOISE AMPLIFIER GaAs MMIC

GENERAL DESCRIPTION
The NJG1146KG1 is a fully matched wide band low noise amplifier GaAs MMIC for terrestrial application.

To achieve wide dynamic range, the NJG1146KG1 offers high gain mode and low gain mode. Selecting high gain mode for weak signals, the NJG1146KG1 helps improve receiver sensitivity through high gain and low noise figure. Selecting low gain mode for strong signals, it bypasses LNA circuit to offer higher linearity.

A small and ultra-thin package of ESON6-G1 is adopted.

APPLICATIONS
Terrestrial application from 40MHz to 900MHz
Digital TV, Set-top box and Broadband CATV applications

FEATURES
- **Operating frequency**: 40MHz to 900MHz
- **Operating voltage**: 5.0V typ.
- **Package size**: ESON6-G1 (Package size: 1.6mm x 1.6mm x 0.397mm typ.)

[High gain mode]
- **Operating current**: 60mA typ.
- **Gain**: 12.0dB typ.
- **Noise figure**: 2.2dB typ.
- **IM2**: 52.0dB typ.
- **IM3**: 80.0dB typ.

[Low gain mode]
- **Low current consumption**: 30μA typ.
- **Gain(Low loss)**: -1.0dB typ.

PIN CONFIGURATION

![Pin Connection Diagram]

Pin Connection
1. RFOUT1
2. NC(GND)
3. RFOUT2
4. RFIN
5. GND
6. VCTL
*Exposed PAD: GND

TRUTH TABLE

<table>
<thead>
<tr>
<th>V_{CTL}</th>
<th>LNA ON</th>
<th>Bypass</th>
<th>LNA mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>ON</td>
<td>OFF</td>
<td>High Gain mode</td>
</tr>
<tr>
<td>L</td>
<td>OFF</td>
<td>ON</td>
<td>Low Gain mode</td>
</tr>
</tbody>
</table>

Note: Specifications and description listed in this datasheet are subject to change without notice.
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>RATINGS</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain voltage</td>
<td>V_{DD}</td>
<td></td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>Control voltage</td>
<td>V_{CTL}</td>
<td></td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>Input power</td>
<td>P_{IN}</td>
<td>$V_{DD}=5.0V$</td>
<td>+10</td>
<td>dBm</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{D}</td>
<td>4-layer FR4 PCB with through-hole (101.5x114.5mm), $T_j=150^\circ C$</td>
<td>1200</td>
<td>mW</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>T_{opr}</td>
<td></td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS

1 (DC CHARACTERISTICS)

$V_{DD}=5.0V$, $Ta=+25^\circ C$, with application circuit

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating voltage</td>
<td>V_{DD}</td>
<td></td>
<td>2.4</td>
<td>5.0</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Control voltage (High)</td>
<td>$V_{CTL(H)}$</td>
<td></td>
<td>1.3</td>
<td>1.8</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Control voltage (Low)</td>
<td>$V_{CTL(L)}$</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td>Operating current1</td>
<td>I_{DD1}</td>
<td>RF OFF, $V_{CTL}=1.8V$</td>
<td>-</td>
<td>60</td>
<td>80</td>
<td>mA</td>
</tr>
<tr>
<td>Operating current2</td>
<td>I_{DD2}</td>
<td>RF OFF, $V_{CTL}=0V$</td>
<td>-</td>
<td>30</td>
<td>50</td>
<td>μA</td>
</tr>
<tr>
<td>Control current</td>
<td>I_{CTL}</td>
<td>RF OFF, $V_{CTL}=1.8V$</td>
<td>-</td>
<td>6</td>
<td>12</td>
<td>μA</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS2 (High Gain mode)

\(V_{\text{DD}}=5.0\,V, \, V_{\text{CTL}}=1.8\,V, \, \text{freq}=40\,\text{to}\,900\,\text{MHz}, \, T_a=+25^\circ\,\text{C}, \, Z_s=Z_l=50\,\Omega, \) with application circuit

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small signal gain1</td>
<td>Gain1</td>
<td>Exclude PCB & connector losses *1</td>
<td>9.0</td>
<td>12.0</td>
<td>14.0</td>
<td>dB</td>
</tr>
<tr>
<td>Noise figure1_1</td>
<td>NF1_1</td>
<td>freq=40 to 80MHz, Exclude PCB & connector losses *2</td>
<td>-</td>
<td>2.5</td>
<td>4.0</td>
<td>dB</td>
</tr>
<tr>
<td>Noise figure1_2</td>
<td>NF1_2</td>
<td>freq=80 to 900MHz, Exclude PCB & connector losses *2</td>
<td>-</td>
<td>2.2</td>
<td>3.0</td>
<td>dB</td>
</tr>
<tr>
<td>Input power at 1dB gain compression point1</td>
<td>P-1dB(IN)1</td>
<td></td>
<td>+0.0</td>
<td>+6.0</td>
<td>-</td>
<td>dBm</td>
</tr>
<tr>
<td>Input 3rd order intercept point1</td>
<td>IIP3_1</td>
<td>(f_1=\text{freq}, f_2=\text{freq}+100,\text{kHz}, P_{\text{in}}=12,\text{dBm})</td>
<td>+16.0</td>
<td>+22.0</td>
<td>-</td>
<td>dBm</td>
</tr>
<tr>
<td>2nd order intermodulation distortion1</td>
<td>IM2_1</td>
<td>(f_1=200,\text{MHz}, f_2=500,\text{MHz}, f_{\text{meas}}=700,\text{MHz}, P_{\text{in}1}=P_{\text{in}2}=-15,\text{dBm}) *3</td>
<td>42.0</td>
<td>52.0</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>3rd order intermodulation distortion1</td>
<td>IM3_1</td>
<td>(f_1=600,\text{MHz}, f_2=650,\text{MHz}, f_{\text{meas}}=700,\text{MHz}, P_{\text{in}1}=P_{\text{in}2}=-15,\text{dBm}) *3</td>
<td>55.0</td>
<td>80.0</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Isolation</td>
<td>ISL1</td>
<td>S12</td>
<td>-</td>
<td>-17.0</td>
<td>-13.0</td>
<td>dB</td>
</tr>
<tr>
<td>RF IN Return loss1</td>
<td>RLI1</td>
<td></td>
<td>7.0</td>
<td>10.0</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>RF OUT Return loss1</td>
<td>RLO1</td>
<td></td>
<td>7.0</td>
<td>10.0</td>
<td>-</td>
<td>dB</td>
</tr>
</tbody>
</table>

*1 Input & output PCB and connector losses: 0.014dB(40MHz), 0.088dB(620MHz), 0.121dB(900MHz)

*2 Input PCB and connector losses: 0.007dB(40MHz), 0.011dB(80MHz), 0.044dB(620MHz), 0.060dB(900MHz)

*3 Definitions of IM2 and IM3.
ELECTRICAL CHARACTERISTICS

(High Gain mode)

\[V_{DD}=5.0\text{V}, \ V_{CTL}=1.8\text{V}, \ \text{freq}=40 \ to \ 900\text{MHz}, \ Ta=+25^\circ\text{C}, \ Z_S=Z_i=75\Omega, \] with application circuit

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small signal gain75</td>
<td>Gain75</td>
<td>Exclude PCB & connector losses *1</td>
<td>-</td>
<td>12.0</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Composite Second Order</td>
<td>CSO</td>
<td>74channels *4, CW \ P_{IN}=+15dBmV \ fmeas=295.25MHz,</td>
<td>-</td>
<td>-56</td>
<td>-</td>
<td>dBc</td>
</tr>
<tr>
<td>Composite Triple Beat</td>
<td>CTB</td>
<td>74channels *4, \ P_{IN}=+15dBmV \ fmeas=295.25±1.25MHz,</td>
<td>-</td>
<td>-81</td>
<td>-</td>
<td>dBc</td>
</tr>
<tr>
<td>Cross Modulation</td>
<td>XMOD</td>
<td>74channels *4, Modulation \ P_{IN}=+15dBmV \ fmeas=295.25±15.75kHz,</td>
<td>-</td>
<td>-80</td>
<td>-</td>
<td>dBc</td>
</tr>
<tr>
<td>RF IN Return loss75</td>
<td>RLi75</td>
<td></td>
<td>-</td>
<td>15</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>RF OUT Return loss75</td>
<td>RL\text{o}75</td>
<td></td>
<td>-</td>
<td>15</td>
<td>-</td>
<td>dB</td>
</tr>
</tbody>
</table>

*1 Input & output PCB and connector losses: 0.014dB(40MHz), 0.088dB(620MHz), 0.121dB(900MHz)

*4 74channels: ch1 to C63(91.25 to 463.25MHz 6MHz step) and U13 to U25(471.25 to 543.25MHz 6MHz step) except ch7(189.25MHz), C28(253.25MHz)
ELECTRICAL CHARACTERISTICS

(Low Gain mode)

\[V_{DD}=5.0V, \ V_{CTL}=0V, \ \text{freq}=40 \text{ to } 900MHz, \ \text{Ta}=+25^\circ C, \ Z_S=Z_L=50\Omega, \] with application circuit

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small signal gain2</td>
<td>Gain2</td>
<td>Exclude PCB & connector losses *1</td>
<td>-2.5</td>
<td>-1.0</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Input power at 1dB gain compression point2</td>
<td>P-1dB(IN)2</td>
<td></td>
<td>+10.0</td>
<td>+16.0</td>
<td>-</td>
<td>dBm</td>
</tr>
<tr>
<td>Input 3rd order intercept point2</td>
<td>IIP3_2</td>
<td>f1=\text{freq}, f2=\text{freq}+100kHz, P_{IN}=-2dBm</td>
<td>+25.0</td>
<td>+33.0</td>
<td>-</td>
<td>dBm</td>
</tr>
<tr>
<td>2nd order intermodulation distortion1</td>
<td>IM2_2</td>
<td>f1=200MHz, f2=500MHz, f_{meas}=700MHz, P_{IN1}=P_{IN2}=0dBm *3</td>
<td>40.0</td>
<td>60.0</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>3rd order intermodulation distortion1</td>
<td>IM3_2</td>
<td>f1=600MHz, f2=650MHz, f_{meas}=700MHz, P_{IN1}=P_{IN2}=0dBm *3</td>
<td>48.0</td>
<td>70.0</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>RF IN Return loss2</td>
<td>RLi2</td>
<td></td>
<td>8.0</td>
<td>15.0</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>RF OUT Return loss2</td>
<td>RLo2</td>
<td></td>
<td>8.0</td>
<td>15.0</td>
<td>-</td>
<td>dB</td>
</tr>
</tbody>
</table>

*1 Input & output PCB and connector losses: 0.014dB(40MHz), 0.088dB(620MHz), 0.121dB(900MHz)

*3 Definitions of IM2 and IM3.

Pout(dBm)

![Diagram showing Pout(dBm) vs. frequency(MHz) for IM2 and IM3](image-url)

- IM2
 - Input frequency range: 200MHz to 700MHz
 - Pout range: -IM2 dBm

- IM3
 - Input frequency range: 600MHz to 700MHz
 - Pout range: -IM3 dBm
TERMINAL INFORMATION

<table>
<thead>
<tr>
<th>No.</th>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RFOUT1</td>
<td>At the High gain mode, RF output terminal. This terminal doubles as the drain terminal of the LNA. Please connect this terminal to the power supply (VDD) via inductor (L1).</td>
</tr>
<tr>
<td>2</td>
<td>NC(GND)</td>
<td>No connected terminal. This terminal is not connected with internal circuit.</td>
</tr>
<tr>
<td>3</td>
<td>RFOUT2</td>
<td>At the Low gain mode, RF output terminal. Please connect this terminal with RFOUT1 terminal through DC blocking capacitor (C2) shown in the application circuit.</td>
</tr>
<tr>
<td>4</td>
<td>RFIN</td>
<td>RF input terminal. External capacitor C1 is required to block the DC bias voltage of internal circuit.</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground terminal. This terminal should be connected to the ground plane as close as possible for excellent RF performance.</td>
</tr>
<tr>
<td>6</td>
<td>VCTL</td>
<td>Control voltage terminal.</td>
</tr>
<tr>
<td>Exposed Pad</td>
<td>GND</td>
<td>Ground terminal. Please connect Exposed Pad with GND by using the plated through holes.</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS (High Gain mode)

Conditions: $V_{DD}=5.0\,\text{V}$, $V_{CTL}=1.8\,\text{V}$, $T_a=25^\circ\text{C}$, $Z_s=Z_l=50\,\Omega$, with application circuit
ELECTRICAL CHARACTERISTICS (High Gain mode)
Conditions: $V_{DD}=5.0\text{V}$, $V_{CTL}=1.8\text{V}$, $T_a=25^\circ\text{C}$, $Z_s=Z_l=50\Omega$, with application circuit

- S_{11}, S_{22} (f=10MHz to 3GHz)
- S_{21}, S_{12} (f=10MHz to 3GHz)
- VSWR (f=10MHz to 3GHz)
- Z_{in}, Z_{out} (f=10MHz to 3GHz)
ELECTRICAL CHARACTERISTICS (High Gain mode)

Conditions: $V_{DD}=5.0\,V$, $V_{CTL}=1.8\,V$, $T_a=25^\circ C$, $Z_s=Z_i=50\,\Omega$, with application circuit.

- S11, S22 ($f=50\,MHz$ to $20\,GHz$)
- S21, S12 ($f=50\,MHz$ to $20\,GHz$)

K-factor vs. Frequency

- Frequency (MHz) vs. K-factor graph.
ELECTRICAL CHARACTERISTICS (High Gain mode)
Conditions: \(V_{\text{CTL}} = 1.8 \text{V}, T_a = 25^\circ\text{C}, Z_s = Z_l = 50\Omega \), with application circuit

- **\(I_{\text{DD}} \) vs. \(V_{\text{DD}} \)**
 - (RF OFF)

- **Gain vs. \(V_{\text{DD}} \)**
 - (\(f = 620\text{MHz} \))

- **NF vs. \(V_{\text{DD}} \)**
 - RLo, RLi vs. \(V_{\text{DD}} \)
 - (\(f = 620\text{MHz} \))

- **P-1dB(IN) vs. \(V_{\text{DD}} \)**
 - (\(f = 620\text{MHz} \))

- **IIP3, OIP3 vs. \(V_{\text{DD}} \)**
 - (\(f_1 = 620\text{MHz}, f_2 = 620.1\text{MHz}, \text{Pin} = -12\text{dBm} \))

[Graphs and plots are shown for each characteristic, including current and voltage relationships, gain, noise figure, and power levels.]
ELECTRICAL CHARACTERISTICS (High Gain mode)

Conditions: $V_{\text{CTL}}=1.8\,\text{V}$, $T_a=25^\circ\text{C}$, $Z_s=Z_l=50\,\Omega$, with application circuit

- **IM2 vs. V_{DD}**
 - $(f_1=200\,\text{MHz}, f_2=500\,\text{MHz}, f_{\text{meas}}=700\,\text{MHz}, \text{Pin1}=\text{Pin2}=-15\,\text{dBm})$

- **IM3 vs. V_{DD}**
 - $(f_1=600\,\text{MHz}, f_2=650\,\text{MHz}, f_{\text{meas}}=700\,\text{MHz}, \text{Pin1}=\text{Pin2}=-15\,\text{dBm})$

- **K-factor vs. Frequency**
 - $V_{\text{DD}}=2.4\,\text{V}$
 - $V_{\text{DD}}=5.0\,\text{V}$
 - $V_{\text{DD}}=6.0\,\text{V}$

New Japan Radio Co., Ltd.
ELECTRICAL CHARACTERISTICS (High Gain mode)
Conditions: $V_{DD}=5.0V$, $V_{CTL}=1.8V$, $Z_s=Z_{l}=50\Omega$, with application circuit
ELECTRICAL CHARACTERISTICS (High Gain mode)
Conditions: $V_{DD}=5.0\text{V}$, $V_{CTL}=1.8\text{V}$, $Z_s=Z_i=50\Omega$, with application circuit

- **IM2 vs. Ta**
 - $(f_1=200\text{MHz}, f_2=500\text{MHz}, f_{meas}=700\text{MHz}, \text{Pin}_1=\text{Pin}_2=-15\text{dBm})$
 - $(f_1=600\text{MHz}, f_2=650\text{MHz}, f_{meas}=700\text{MHz}, \text{Pin}_1=\text{Pin}_2=-15\text{dBm})$

- **RLi, RLo vs. Ta**
 - $(f=620\text{MHz})$

- **I_{DD} vs. V_{CTL}**
 - $(+$85°C, +75°C, +50°C, +25°C, 0°C, -25°C, -40°C)

- **K-factor vs. Frequency**

New Japan Radio Co., Ltd.
ELECTRICAL CHARACTERISTICS (Low Gain mode)
Conditions: $V_{DD}=5.0V$, $V_{CTL}=0V$, $T_a=25^\circ C$, $Z_s=Z_l=50\Omega$, with application circuit

1. **Pout vs. Pin**
 - Frequency: $f=620MHz$
 - P_{out} vs. P_{in}

2. **Gain, I_{DD} vs. Pin**
 - Frequency: $f=620MHz$
 - Gain and I_{DD} vs. P_{in}

3. **Pout, IM3 vs. Pin**
 - Frequency: $f_1=620MHz$, $f_2=620.1MHz$
 - P_{out} and $IM3$ vs. P_{in}

4. **Gain vs. Frequency**
 - Exclude PCB, Connector Losses

5. **P-1dB(IN) vs. Frequency**
 - Frequency: $f_1=Frequency$, $f_2=f_1+100kHz$, $Pin=-2dBm$

6. **IIP3, OIP3 vs. Frequency**
 - Frequency: $f_1=Frequency$, $f_2=f_1+100kHz$, $Pin=-2dBm$
ELECTRICAL CHARACTERISTICS (Low Gain mode)

Conditions: $V_{DD}=5.0V$, $V_{CTL}=0V$, $T_a=25^\circ C$, $Z_s=Z_l=50\,\Omega$, with application circuit
ELECTRICAL CHARACTERISTICS (Low Gain mode)

Conditions: \(V_{DD} = 5.0V \), \(V_{CTL} = 0V \), \(Ta = 25°C \), \(Z_s = Z_l = 50\Omega \), with application circuit

![Graphs showing S11, S22 (f=50MHz to 20GHz) and S21, S12 (f=50MHz to 20GHz)]

![Graphs showing K-factor vs. Frequency for S11, S22 and S21, S12]
ELECTRICAL CHARACTERISTICS (Low Gain mode)
Conditions: $V_{DD}=5.0\,V$, $V_{CTL}=0\,V$, $Z_s=Z_l=50\,\Omega$, with application circuit

I_{DD} vs. T_a

$P-1\,dB(IN)$ vs. T_a

G_{1dB} vs. T_a

I_{IP3}, O_{IP3} vs. T_a

R_{Li}, R_{Lo} vs. T_a

$OIP3$

I_{IP3}

$OIP3$

R_{Li}

R_{Lo}

I_{DD} vs. Ta

(RF OFF)

I_{DD} ($\mu\,A$)

Ta ($^\circ\,C$)

$Gain$ vs. Ta

(f=620MHz)

$Gain$ (dB)

Ta ($^\circ\,C$)

$P-1dB(IN)$ vs. Ta

(f=620MHz)

$P-1dB(IN)$ (dBm)

Ta ($^\circ\,C$)

$IIP3$, $OIP3$ vs. Ta

(f1=620MHz, f2=620.1MHz, Pin=-2dBm)

$IIP3$, $OIP3$ (dBm)

Ta ($^\circ\,C$)
ELECTRICAL CHARACTERISTICS (Low Gain mode)
Conditions: \(V_{DD}=5.0 \text{V}, V_{CTL}=0 \text{V}, Z_s=Z_l=50 \Omega \), with application circuit

- **IM2 vs. Ta** (\(f_1=200 \text{MHz}, f_2=500 \text{MHz}, f_{meas}=700 \text{MHz}, \text{Pin1}=\text{Pin2}=0 \text{dBm} \))

- **IM3 vs. Ta** (\(f_1=600 \text{MHz}, f_2=650 \text{MHz}, f_{meas}=700 \text{MHz}, \text{Pin1}=\text{Pin2}=0 \text{dBm} \))

- **K-factor vs. Frequency**
 - \(Ta=-40 \degree \text{C} \)
 - \(Ta=+25 \degree \text{C} \)
 - \(Ta=+85 \degree \text{C} \)
■ APPLICATION CIRCUIT

(Top View)

R1
680 ohm

1Pin INDEX

■ TEST PCB LAYOUT

PRECAUTIONS

- C1 to C3 are DC-Blocking capacitors, and L1 is a DC-feed inductor, and C4 is a bypass capacitor.
- Please connect Exposed Pad with GND by using the plated through hole.
- In order not to couple with terminal RFIN and RFOUT, please layout ground pattern under the IC.
- All external parts are placed as close as possible to the IC.
MEASUREMENT BLOCK DIAGRAM

Measuring instruments
- NF Analyzer : Keysight 8973A
- Noise Source : Keysight 346A

Setting the NF analyzer

Measurement mode form
- Device under test : Amplifier
- System downconverter : off

Mode setup form
- Sideband : LSB
- Averages : 16
- Average mode : Point
- Bandwidth : 4MHz
- Loss comp : off
- Tcold : setting the temperature of noise source (303.15K)

Noise source and NF analyzer are connected directly.

Calibration Setup

Measurement Setup

PACKAGE OUTLINE (ESON6-G1)

- **Unit:** mm
- **Substrate:** Cu
- **Terminal Treat:** SnBi
- **Molding Material:** Epoxy Resin
- **Weight:** 0.0035 (g)

Cautions on using this product
- This product contains Gallium-Arsenide (GaAs) which is a harmful material.
 - Do NOT eat or put into mouth.
 - Do NOT dispose in fire or break up this product.
 - Do NOT chemically make gas or powder with this product.
 - To waste this product, please obey the relating law of your country.

[CAUTION]
- The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions.
- The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

This product may be damaged with electric static discharge (ESD) or spike voltage. Please handle with care to avoid these damages.