NJG1148MD7 is a 5GHz band low noise amplifier GaAs MMIC designed for wireless LAN, wireless image transmission and Intelligent Transport System.

The NJG1148MD7 has a LNA pass-through function to select high gain mode or low gain mode by low control voltage operation. Within the wide dynamic range from 4.9~5.95GHz, the NJG1148MD7 achieves low noise figure and high linearity with fewer external components. The ESD protection circuits are integrated into the MMIC. They achieve high ESD protection voltage.

A small and ultra-thin package of EQFN14-D7 is adopted.

APPLICATIONS

5GHz Band application from 4.9GHz to 5.95GHz

Wireless LAN, wireless image transmission and Intelligent transport System applications

FEATURES

- Operating voltage: 3.3V
- Low current consumption: 7.0mA typ. @V_{DD}=3.3V, V_{CTL}=1.8V (LNA mode), 5µA typ. @V_{DD}=3.3V, V_{CTL}=0V (Bypass mode)
- High Gain: 12.5dB typ. @V_{DD}=3.3V, V_{CTL}=1.8V (LNA mode)
- Low Noise figure: 1.5dB typ. @V_{DD}=3.3V, V_{CTL}=1.8V (LNA mode)
- High IIP3: +5.0dBm typ. @V_{DD}=3.3V, V_{CTL}=1.8V (LNA mode)
- Low Insertion Loss: 5.0dB typ. @V_{DD}=3.3V, V_{CTL}=0V (Bypass mode)
- Few external components: 1pc (Bypass Capacitor)
- Small package size: EQFN14-D7 (Package size: 1.6mm x 1.6mm x 0.397mm typ.)
- Pb free, Halogen free

PIN CONFIGURATION

Pin Connection:
1. NC (GND) 8. NC (GND)
2. RFIN 9. VDD
3. GND 10. RFOUT
4. NC (GND) 11. NC (GND)
5. GND 12. GND
6. GND 13. NC (GND)
7. VCTL 14. NC (GND)

TRUTH TABLE

<table>
<thead>
<tr>
<th>V_{CTL}</th>
<th>LNA Circuit</th>
<th>Bypass Circuit</th>
<th>Operating mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>ON</td>
<td>OFF</td>
<td>LNA mode</td>
</tr>
<tr>
<td>L</td>
<td>OFF</td>
<td>ON</td>
<td>Bypass mode</td>
</tr>
</tbody>
</table>

Note: Specifications and description listed in this datasheet are subject to change without notice.

Ver.2014-05-22
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>RATINGS</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain voltage</td>
<td>V_{DD}</td>
<td></td>
<td>5.0</td>
<td>V</td>
</tr>
<tr>
<td>Control voltage</td>
<td>V_{CTL}</td>
<td></td>
<td>5.0</td>
<td>V</td>
</tr>
<tr>
<td>Input power</td>
<td>P_{in}</td>
<td>$V_{DD}=3.3V$</td>
<td>+15</td>
<td>dBm</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{D}</td>
<td>4-layer FR4 PCB with through-hole (76.2x114.3mm), $T_j=150°C$</td>
<td>1300</td>
<td>mW</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>T_{opr}</td>
<td></td>
<td>-40~+85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-55~+150</td>
<td>°C</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS 1 (DC CHARACTERISTICS)

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating voltage</td>
<td>V_{DD}</td>
<td></td>
<td>2.7</td>
<td>3.3</td>
<td>4.5</td>
<td>V</td>
</tr>
<tr>
<td>Control voltage (High)</td>
<td>$V_{CTL(H)}$</td>
<td></td>
<td>1.6</td>
<td>1.8</td>
<td>4.5</td>
<td>V</td>
</tr>
<tr>
<td>Control voltage (Low)</td>
<td>$V_{CTL(L)}$</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>Operating current1</td>
<td>I_{DD1}</td>
<td>RF OFF, $V_{CTL}=1.8V$</td>
<td>-</td>
<td>7.0</td>
<td>11.0</td>
<td>mA</td>
</tr>
<tr>
<td>Operating current2</td>
<td>I_{DD2}</td>
<td>RF OFF, $V_{CTL}=0V$</td>
<td>-</td>
<td>5</td>
<td>9</td>
<td>µA</td>
</tr>
<tr>
<td>Control current</td>
<td>I_{CTL}</td>
<td>RF OFF, $V_{CTL}=1.8V$</td>
<td>-</td>
<td>6</td>
<td>10</td>
<td>µA</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS 2 (LNA mode)

$V_{DD}=3.3V, V_{CTL}=1.8V, \text{freq}=4900\sim5950MHz, T_a=+25°C, Z_s=Z_l=50\Omega$, with application circuit

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small signal gain</td>
<td>Gain</td>
<td>Exclude PCB & connector losses *1</td>
<td>9.5</td>
<td>12.5</td>
<td>16.0</td>
<td>dB</td>
</tr>
<tr>
<td>Noise figure</td>
<td>NF</td>
<td>Exclude PCB & connector losses *2</td>
<td>-</td>
<td>1.5</td>
<td>2.2</td>
<td>dB</td>
</tr>
<tr>
<td>Input power at 1dB gain compression point1</td>
<td>P-1dB (IN)1</td>
<td></td>
<td>-12.0</td>
<td>-5.0</td>
<td>-</td>
<td>dBm</td>
</tr>
<tr>
<td>Input 3rd order intercept point1</td>
<td>IIP3_1</td>
<td>$f_1=\text{freq}, f_2=\text{freq}+100kHz, P_{IN}=-25dBm$</td>
<td>0.0</td>
<td>+5.0</td>
<td>-</td>
<td>dBm</td>
</tr>
</tbody>
</table>
| Input Tx Power at 1dB Gain Compression Point | Psat (Tx-1dB) | Fundamental frequency: $f_1=5500MHz, P_{IN}=-30dBm$
Tx frequency: $f_2=1710MHz, 1940MHz, 2170MHz$ | -17.0 | -8.0 | - | dBm |
| Isolation | ISL | | - | 35.0 | - | dB |
| RF IN Return loss1 | RLI1 | | 8.0 | 12.0 | - | dB |
| RF OUT Return loss1 | RLo1 | | 5.0 | 12.0 | - | dB |

*1 Input & output PCB and connector losses: 0.58dB (5500MHz)
*2 Input PCB and connector losses: 0.29dB (5500MHz)

ELECTRICAL CHARACTERISTICS 3 (Bypass mode)

$V_{DD}=3.3V, V_{CTL}=0V, \text{freq}=4900\sim5950MHz, T_a=+25°C, Z_s=Z_l=50\Omega$, with application circuit

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>Loss</td>
<td>Exclude PCB & connector losses *1</td>
<td>-</td>
<td>5.0</td>
<td>7.0</td>
<td>dB</td>
</tr>
<tr>
<td>Input power at 1dB gain compression point2</td>
<td>P-1dB (IN)2</td>
<td></td>
<td>-1.0</td>
<td>+10.0</td>
<td>-</td>
<td>dBm</td>
</tr>
<tr>
<td>Input 3rd order intercept point2</td>
<td>IIP3_2</td>
<td>$f_1=\text{freq}, f_2=\text{freq}+100kHz, P_{IN}=-10dBm$</td>
<td>+3.0</td>
<td>+10.0</td>
<td>-</td>
<td>dBm</td>
</tr>
<tr>
<td>RF IN Return loss2</td>
<td>RLI2</td>
<td></td>
<td>7.0</td>
<td>12.0</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>RF OUT Return loss2</td>
<td>RLo2</td>
<td></td>
<td>8.0</td>
<td>12.0</td>
<td>-</td>
<td>dB</td>
</tr>
</tbody>
</table>

*1 Input & output PCB and connector losses: 0.58dB (5500MHz)
TERMINAL INFORMATION

<table>
<thead>
<tr>
<th>No.</th>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 4, 8, 11, 13, 14</td>
<td>NC(GND)</td>
<td>No connected terminal. This terminal is not connected with internal circuit. Please connect this terminal with ground place as close as possible for excellent RF performance.</td>
</tr>
<tr>
<td>2</td>
<td>RFIN</td>
<td>RF input terminal. This IC integrates an input DC blocking capacitor.</td>
</tr>
<tr>
<td>3, 5, 6, 12</td>
<td>GND</td>
<td>Ground terminal. This terminal should be connected to the ground plane as close as possible for excellent RF performance.</td>
</tr>
<tr>
<td>7</td>
<td>VCTL</td>
<td>Control voltage terminal.</td>
</tr>
<tr>
<td>9</td>
<td>VDD</td>
<td>Supply voltage terminal for LNA and logic circuit. Bypass to ground with capacitor C1 as close as possible to the IC.</td>
</tr>
<tr>
<td>10</td>
<td>Rfout</td>
<td>RF output terminal. This IC integrates an input DC blocking capacitor.</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS (LNA mode)
Conditions: \(V_{DD} = 3.3V, \ V_{CTL} = 1.8V, \ \text{Ta}=25^\circ C, Zs=Zl=50\Omega \), with application circuit

Pout vs. Pin

\((f=5500MHz) \)

- Gain, IDD vs. Pin

\((f=5500MHz) \)

- Pout vs. Pin

\((f=5500MHz) \)

- Gain, NF vs. frequency

\((\text{Exclude PCB, connector losses}) \)

- Pout, IM3 vs. Pin

\((f1=5500MHz, \ f2=f1+100kHz) \)

- Gain, NF vs. frequency

\((\text{Exclude PCB, connector losses}) \)
ELECTRICAL CHARACTERISTICS (LNA mode)
Conditions: \(V_{DD}=3.3\text{V}, V_{CTL}=1.8\text{V}, T_a=25^\circ\text{C}, Z_s=Z_l=50\Omega \), with application circuit

- **P-1dB(IN) vs. frequency**
 - Frequency range: 4900 – 5950 MHz
 -

- **OIP3, IIP3 vs. frequency**
 - Frequency range: 4900 – 5950 MHz
 -

- **Gain vs. Interference Power**
 - Frequency: 5500 MHz
 -

- **K factor vs. frequency**
 - Frequency range: 50 MHz – 20 GHz
 -

New Japan Radio Co., Ltd.
ELECTRICAL CHARACTERISTICS (LNA mode)

Conditions: $V_{DD}=3.3V$, $V_{CTL}=1.8V$, $Ta=25^\circ C$, $Zs=Zl=50\Omega$, with application circuit

S11, S22 (0.05~10GHz)

μs, μs

S21, S12 (0.05~10GHz)

VSWRi, VSWRo (0.05~10GHz)

Zin, Zout (0.05~10GHz)

S11, S22 (0.05~20GHz)

S21, S12 (0.05~20GHz)
ELECTRICAL CHARACTERISTICS (LNA mode)
Conditions: \(V_{\text{CTL}} = 1.8 \text{V}, T_a = 25^\circ \text{C}, Z_s = Z_l = 50 \Omega \), with application circuit
ELECTRICAL CHARACTERISTICS (LNA mode)
Conditions: $V_{DD}=3.3\,\text{V}$, $V_{CTL}=1.8\,\text{V}$, $Z_s=Z_l=50\,\Omega$, with application circuit

- I_{DD} vs. Temperature (RF off)
- Gain, NF vs. Temperature ($f=5500\,\text{MHz}$)
- RL vs. Temperature ($f=5500\,\text{MHz}$)
- $P_{-1\text{dB(IN)}}$ vs. Temperature ($f=5500\,\text{MHz}$)
- OIP_3, IIP_3 vs. Temperature ($f_1=5500\,\text{MHz}$, $f_2=f_1+100\,\text{kHz}$, $P_{in}=-25\,\text{dBm}$)
- $Psat(Tx-1\text{dB})$ vs. Temperature ($f_1=5500\,\text{MHz}$, $P_{in}=30\,\text{dBm}$, $f_2=1940\,\text{MHz}$)
ELECTRICAL CHARACTERISTICS (LNA mode)
Conditions: $V_{DD}=3.3V$, $V_{CTL}=1.8V$, $Z_s=Z_l=50\Omega$, with application circuit

Kfactor vs. Temperature

(f=50MHz~20GHz)

IDD vs. VCTL

(RF off)
ELECTRICAL CHARACTERISTICS (Bypass mode)
Conditions: \(V_{DD} = 3.3 \text{V}, \ V_{CTL} = 0 \text{V}, \ Ta = 25^\circ \text{C}, \ Z_s = Z_l = 50 \Omega \), with application circuit
ELECTRICAL CHARACTERISTICS (Bypass mode)
Conditions: $V_{DD}=3.3\text{V}$, $V_{CTL}=0\text{V}$, $T_a=25^\circ\text{C}$, $Z_s=Z_l=50\Omega$, with application circuit
ELECTRICAL CHARACTERISTICS (Bypass mode)

Conditions: $V_{\text{CTL}}=0\,\text{V}$, $T_a=25^\circ\text{C}$, $Z_s=Z_l=50\,\Omega$, with application circuit
ELECTRICAL CHARACTERISTICS (Bypass mode)
Conditions: $V_{DD}=3.3\text{V}$, $V_{CTL}=1.8\text{V}$, $Z_s=Z_l=50\Omega$, with application circuit

<table>
<thead>
<tr>
<th>Plot</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I_{do} vs. Temperature (RF off)</td>
</tr>
<tr>
<td></td>
<td>Loss vs. Temperature ($f=5500\text{MHz}$)</td>
</tr>
<tr>
<td></td>
<td>RL vs. Temperature ($f=5500\text{MHz}$)</td>
</tr>
<tr>
<td></td>
<td>$P_{-1\text{dB(IN)}}$ vs. Temperature ($f=5500\text{MHz}$)</td>
</tr>
<tr>
<td></td>
<td>OIP3, IIP3 vs. Temperature ($f_1=5500\text{MHz}$, $f_2=f_1+100\text{kHz}$, $P_{in}=-10\text{dBm}$)</td>
</tr>
<tr>
<td></td>
<td>Kfactor vs. Temperature (50MHz~20GHz)</td>
</tr>
</tbody>
</table>

New Japan Radio Co., Ltd.
APPLICATION CIRCUIT

- Bypass capacitor C1 is placed as close as possible to the IC.
- In order not to couple with terminal RFIN and RFOUT, please layout ground pattern under the IC.
- All GND terminals must be connected to PCB ground place in order to reduce the inductance as soon as possible.

TEST PCB LAYOUT

PARTS LIST

<table>
<thead>
<tr>
<th>Parts ID</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>MURATA GRM03 Series</td>
</tr>
</tbody>
</table>

PCB

- Substrate: FR4
- Thickness: 0.2mm
- MICROSTRIP LINE WIDTH: 0.40mm (Z₀=50Ω)
- PCB SIZE: 17.0mm x 17.0mm
MEASUREMENT BLOCK DIAGRAM

Measuring instruments

- NF Analyzer : Agilent 8975A
- Noise Source : Agilent 346A

Setting the NF analyzer

Measurement mode form
- Device under test : Amplifier
- System downconverter : off

Mode setup form
- Sideband : LSB
- Averages : 16
- Average mode : Point
- Bandwidth : 4MHz
- Loss comp : off
- Tcold : setting the temperature of noise source (300K)

Noise source, the preamplifier, and NF analyzer are connected directly.

Noise source, DUT, the preamplifier, and NF analyzer are connected directly.
■ PACKAGE OUTLINE (ESON14-D7)

Caution on using this product
This product contains Gallium-Arsenide (GaAs) which is a harmful material.
• Do NOT eat or put into mouth.
• Do NOT dispose in fire or break up this product.
• Do NOT chemically make gas or powder with this product.
• To waste this product, please obey the relating law of your country.

This product may be damaged with electric static discharge (ESD) or spike voltage. Please handle with care to avoid these damages.

[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

Unit : mm
Substrate : Cu
Terminal Treat : SnBi
Molding Material : Epoxy Resin
Weight : 3.4mg